Metamath Proof Explorer


Theorem sbiev

Description: Conversion of implicit substitution to explicit substitution. Version of sbie with a disjoint variable condition, not requiring ax-13 . See sbievw for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 30-Jun-1994) (Revised by Wolf Lammen, 18-Jan-2023) Remove dependence on ax-10 and shorten proof. (Revised by BJ, 18-Jul-2023)

Ref Expression
Hypotheses sbiev.1 x ψ
sbiev.2 x = y φ ψ
Assertion sbiev y x φ ψ

Proof

Step Hyp Ref Expression
1 sbiev.1 x ψ
2 sbiev.2 x = y φ ψ
3 sb6 y x φ x x = y φ
4 1 2 equsalv x x = y φ ψ
5 3 4 bitri y x φ ψ