Metamath Proof Explorer


Theorem sbiedw

Description: Conversion of implicit substitution to explicit substitution (deduction version of sbiev ). Version of sbied with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 30-Jun-1994) Avoid ax-13 . (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses sbiedw.1 xφ
sbiedw.2 φxχ
sbiedw.3 φx=yψχ
Assertion sbiedw φyxψχ

Proof

Step Hyp Ref Expression
1 sbiedw.1 xφ
2 sbiedw.2 φxχ
3 sbiedw.3 φx=yψχ
4 1 sbrim yxφψφyxψ
5 1 2 nfim1 xφχ
6 3 com12 x=yφψχ
7 6 pm5.74d x=yφψφχ
8 5 7 sbiev yxφψφχ
9 4 8 bitr3i φyxψφχ
10 9 pm5.74ri φyxψχ