Metamath Proof Explorer


Theorem sblim

Description: Substitution in an implication with a variable not free in the consequent affects only the antecedent. (Contributed by NM, 14-Nov-2013) (Revised by Mario Carneiro, 4-Oct-2016)

Ref Expression
Hypothesis sblim.1 xψ
Assertion sblim yxφψyxφψ

Proof

Step Hyp Ref Expression
1 sblim.1 xψ
2 sbim yxφψyxφyxψ
3 1 sbf yxψψ
4 3 imbi2i yxφyxψyxφψ
5 2 4 bitri yxφψyxφψ