Metamath Proof Explorer


Theorem sbralieALT

Description: Alternative shorter proof of sbralie dependent on ax-ext . (Contributed by NM, 5-Sep-2004) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis sbralie.1 x=yφψ
Assertion sbralieALT xyφyxyxψ

Proof

Step Hyp Ref Expression
1 sbralie.1 x=yφψ
2 cbvralsvw yxψzxzyψ
3 2 sbbii yxyxψyxzxzyψ
4 raleq x=yzxzyψzyzyψ
5 4 sbievw yxzxzyψzyzyψ
6 cbvralsvw zyzyψxyxzzyψ
7 sbco2vv xzzyψxyψ
8 1 bicomd x=yψφ
9 8 equcoms y=xψφ
10 9 sbievw xyψφ
11 7 10 bitri xzzyψφ
12 11 ralbii xyxzzyψxyφ
13 6 12 bitri zyzyψxyφ
14 3 5 13 3bitrri xyφyxyxψ