Metamath Proof Explorer


Theorem scaffn

Description: The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses scaffval.b B=BaseW
scaffval.f F=ScalarW
scaffval.k K=BaseF
scaffval.a ˙=𝑠𝑓W
Assertion scaffn ˙FnK×B

Proof

Step Hyp Ref Expression
1 scaffval.b B=BaseW
2 scaffval.f F=ScalarW
3 scaffval.k K=BaseF
4 scaffval.a ˙=𝑠𝑓W
5 eqid W=W
6 1 2 3 4 5 scaffval ˙=xK,yBxWy
7 ovex xWyV
8 6 7 fnmpoi ˙FnK×B