Metamath Proof Explorer


Theorem lmodscaf

Description: The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses scaffval.b B = Base W
scaffval.f F = Scalar W
scaffval.k K = Base F
scaffval.a ˙ = 𝑠𝑓 W
Assertion lmodscaf W LMod ˙ : K × B B

Proof

Step Hyp Ref Expression
1 scaffval.b B = Base W
2 scaffval.f F = Scalar W
3 scaffval.k K = Base F
4 scaffval.a ˙ = 𝑠𝑓 W
5 eqid W = W
6 1 2 5 3 lmodvscl W LMod x K y B x W y B
7 6 3expb W LMod x K y B x W y B
8 7 ralrimivva W LMod x K y B x W y B
9 1 2 3 4 5 scaffval ˙ = x K , y B x W y
10 9 fmpo x K y B x W y B ˙ : K × B B
11 8 10 sylib W LMod ˙ : K × B B