Metamath Proof Explorer


Theorem scmatrhmval

Description: The value of the ring homomorphism F . (Contributed by AV, 22-Dec-2019)

Ref Expression
Hypotheses scmatrhmval.k K=BaseR
scmatrhmval.a A=NMatR
scmatrhmval.o 1˙=1A
scmatrhmval.t ˙=A
scmatrhmval.f F=xKx˙1˙
Assertion scmatrhmval RVXKFX=X˙1˙

Proof

Step Hyp Ref Expression
1 scmatrhmval.k K=BaseR
2 scmatrhmval.a A=NMatR
3 scmatrhmval.o 1˙=1A
4 scmatrhmval.t ˙=A
5 scmatrhmval.f F=xKx˙1˙
6 oveq1 x=Xx˙1˙=X˙1˙
7 simpr RVXKXK
8 ovexd RVXKX˙1˙V
9 5 6 7 8 fvmptd3 RVXKFX=X˙1˙