Description: The value of the ring homomorphism F . (Contributed by AV, 22-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | scmatrhmval.k | |- K = ( Base ` R ) |
|
| scmatrhmval.a | |- A = ( N Mat R ) |
||
| scmatrhmval.o | |- .1. = ( 1r ` A ) |
||
| scmatrhmval.t | |- .* = ( .s ` A ) |
||
| scmatrhmval.f | |- F = ( x e. K |-> ( x .* .1. ) ) |
||
| Assertion | scmatrhmval | |- ( ( R e. V /\ X e. K ) -> ( F ` X ) = ( X .* .1. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scmatrhmval.k | |- K = ( Base ` R ) |
|
| 2 | scmatrhmval.a | |- A = ( N Mat R ) |
|
| 3 | scmatrhmval.o | |- .1. = ( 1r ` A ) |
|
| 4 | scmatrhmval.t | |- .* = ( .s ` A ) |
|
| 5 | scmatrhmval.f | |- F = ( x e. K |-> ( x .* .1. ) ) |
|
| 6 | oveq1 | |- ( x = X -> ( x .* .1. ) = ( X .* .1. ) ) |
|
| 7 | simpr | |- ( ( R e. V /\ X e. K ) -> X e. K ) |
|
| 8 | ovexd | |- ( ( R e. V /\ X e. K ) -> ( X .* .1. ) e. _V ) |
|
| 9 | 5 6 7 8 | fvmptd3 | |- ( ( R e. V /\ X e. K ) -> ( F ` X ) = ( X .* .1. ) ) |