Description: The value of the ring homomorphism F . (Contributed by AV, 22-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | scmatrhmval.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| scmatrhmval.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | ||
| scmatrhmval.o | ⊢ 1 = ( 1r ‘ 𝐴 ) | ||
| scmatrhmval.t | ⊢ ∗ = ( ·𝑠 ‘ 𝐴 ) | ||
| scmatrhmval.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐾 ↦ ( 𝑥 ∗ 1 ) ) | ||
| Assertion | scmatrhmval | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾 ) → ( 𝐹 ‘ 𝑋 ) = ( 𝑋 ∗ 1 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | scmatrhmval.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 2 | scmatrhmval.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 3 | scmatrhmval.o | ⊢ 1 = ( 1r ‘ 𝐴 ) | |
| 4 | scmatrhmval.t | ⊢ ∗ = ( ·𝑠 ‘ 𝐴 ) | |
| 5 | scmatrhmval.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐾 ↦ ( 𝑥 ∗ 1 ) ) | |
| 6 | oveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∗ 1 ) = ( 𝑋 ∗ 1 ) ) | |
| 7 | simpr | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾 ) → 𝑋 ∈ 𝐾 ) | |
| 8 | ovexd | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾 ) → ( 𝑋 ∗ 1 ) ∈ V ) | |
| 9 | 5 6 7 8 | fvmptd3 | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾 ) → ( 𝐹 ‘ 𝑋 ) = ( 𝑋 ∗ 1 ) ) |