| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scmatrhmval.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | scmatrhmval.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 3 |  | scmatrhmval.o | ⊢  1   =  ( 1r ‘ 𝐴 ) | 
						
							| 4 |  | scmatrhmval.t | ⊢  ∗   =  (  ·𝑠  ‘ 𝐴 ) | 
						
							| 5 |  | scmatrhmval.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝐾  ↦  ( 𝑥  ∗   1  ) ) | 
						
							| 6 |  | scmatrhmval.c | ⊢ 𝐶  =  ( 𝑁  ScMat  𝑅 ) | 
						
							| 7 | 1 2 3 4 5 | scmatrhmval | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐾 )  →  ( 𝐹 ‘ 𝑋 )  =  ( 𝑋  ∗   1  ) ) | 
						
							| 8 | 7 | 3adant1 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑋  ∈  𝐾 )  →  ( 𝐹 ‘ 𝑋 )  =  ( 𝑋  ∗   1  ) ) | 
						
							| 9 |  | 3simpa | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑋  ∈  𝐾 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 10 |  | simp3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑋  ∈  𝐾 )  →  𝑋  ∈  𝐾 ) | 
						
							| 11 | 2 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 12 | 11 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑋  ∈  𝐾 )  →  𝐴  ∈  Ring ) | 
						
							| 13 |  | eqid | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 ) | 
						
							| 14 | 13 3 | ringidcl | ⊢ ( 𝐴  ∈  Ring  →   1   ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 15 | 12 14 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑋  ∈  𝐾 )  →   1   ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 16 | 1 2 13 4 | matvscl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑋  ∈  𝐾  ∧   1   ∈  ( Base ‘ 𝐴 ) ) )  →  ( 𝑋  ∗   1  )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 17 | 9 10 15 16 | syl12anc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑋  ∈  𝐾 )  →  ( 𝑋  ∗   1  )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 18 |  | oveq1 | ⊢ ( 𝑐  =  𝑋  →  ( 𝑐  ∗   1  )  =  ( 𝑋  ∗   1  ) ) | 
						
							| 19 | 18 | eqeq2d | ⊢ ( 𝑐  =  𝑋  →  ( ( 𝑋  ∗   1  )  =  ( 𝑐  ∗   1  )  ↔  ( 𝑋  ∗   1  )  =  ( 𝑋  ∗   1  ) ) ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑋  ∈  𝐾 )  ∧  𝑐  =  𝑋 )  →  ( ( 𝑋  ∗   1  )  =  ( 𝑐  ∗   1  )  ↔  ( 𝑋  ∗   1  )  =  ( 𝑋  ∗   1  ) ) ) | 
						
							| 21 |  | eqidd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑋  ∈  𝐾 )  →  ( 𝑋  ∗   1  )  =  ( 𝑋  ∗   1  ) ) | 
						
							| 22 | 10 20 21 | rspcedvd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑋  ∈  𝐾 )  →  ∃ 𝑐  ∈  𝐾 ( 𝑋  ∗   1  )  =  ( 𝑐  ∗   1  ) ) | 
						
							| 23 | 1 2 13 3 4 6 | scmatel | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( ( 𝑋  ∗   1  )  ∈  𝐶  ↔  ( ( 𝑋  ∗   1  )  ∈  ( Base ‘ 𝐴 )  ∧  ∃ 𝑐  ∈  𝐾 ( 𝑋  ∗   1  )  =  ( 𝑐  ∗   1  ) ) ) ) | 
						
							| 24 | 23 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑋  ∈  𝐾 )  →  ( ( 𝑋  ∗   1  )  ∈  𝐶  ↔  ( ( 𝑋  ∗   1  )  ∈  ( Base ‘ 𝐴 )  ∧  ∃ 𝑐  ∈  𝐾 ( 𝑋  ∗   1  )  =  ( 𝑐  ∗   1  ) ) ) ) | 
						
							| 25 | 17 22 24 | mpbir2and | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑋  ∈  𝐾 )  →  ( 𝑋  ∗   1  )  ∈  𝐶 ) | 
						
							| 26 | 8 25 | eqeltrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑋  ∈  𝐾 )  →  ( 𝐹 ‘ 𝑋 )  ∈  𝐶 ) |