| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scmatrhmval.k |  |-  K = ( Base ` R ) | 
						
							| 2 |  | scmatrhmval.a |  |-  A = ( N Mat R ) | 
						
							| 3 |  | scmatrhmval.o |  |-  .1. = ( 1r ` A ) | 
						
							| 4 |  | scmatrhmval.t |  |-  .* = ( .s ` A ) | 
						
							| 5 |  | scmatrhmval.f |  |-  F = ( x e. K |-> ( x .* .1. ) ) | 
						
							| 6 |  | scmatrhmval.c |  |-  C = ( N ScMat R ) | 
						
							| 7 | 1 2 3 4 5 | scmatrhmval |  |-  ( ( R e. Ring /\ X e. K ) -> ( F ` X ) = ( X .* .1. ) ) | 
						
							| 8 | 7 | 3adant1 |  |-  ( ( N e. Fin /\ R e. Ring /\ X e. K ) -> ( F ` X ) = ( X .* .1. ) ) | 
						
							| 9 |  | 3simpa |  |-  ( ( N e. Fin /\ R e. Ring /\ X e. K ) -> ( N e. Fin /\ R e. Ring ) ) | 
						
							| 10 |  | simp3 |  |-  ( ( N e. Fin /\ R e. Ring /\ X e. K ) -> X e. K ) | 
						
							| 11 | 2 | matring |  |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) | 
						
							| 12 | 11 | 3adant3 |  |-  ( ( N e. Fin /\ R e. Ring /\ X e. K ) -> A e. Ring ) | 
						
							| 13 |  | eqid |  |-  ( Base ` A ) = ( Base ` A ) | 
						
							| 14 | 13 3 | ringidcl |  |-  ( A e. Ring -> .1. e. ( Base ` A ) ) | 
						
							| 15 | 12 14 | syl |  |-  ( ( N e. Fin /\ R e. Ring /\ X e. K ) -> .1. e. ( Base ` A ) ) | 
						
							| 16 | 1 2 13 4 | matvscl |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( X e. K /\ .1. e. ( Base ` A ) ) ) -> ( X .* .1. ) e. ( Base ` A ) ) | 
						
							| 17 | 9 10 15 16 | syl12anc |  |-  ( ( N e. Fin /\ R e. Ring /\ X e. K ) -> ( X .* .1. ) e. ( Base ` A ) ) | 
						
							| 18 |  | oveq1 |  |-  ( c = X -> ( c .* .1. ) = ( X .* .1. ) ) | 
						
							| 19 | 18 | eqeq2d |  |-  ( c = X -> ( ( X .* .1. ) = ( c .* .1. ) <-> ( X .* .1. ) = ( X .* .1. ) ) ) | 
						
							| 20 | 19 | adantl |  |-  ( ( ( N e. Fin /\ R e. Ring /\ X e. K ) /\ c = X ) -> ( ( X .* .1. ) = ( c .* .1. ) <-> ( X .* .1. ) = ( X .* .1. ) ) ) | 
						
							| 21 |  | eqidd |  |-  ( ( N e. Fin /\ R e. Ring /\ X e. K ) -> ( X .* .1. ) = ( X .* .1. ) ) | 
						
							| 22 | 10 20 21 | rspcedvd |  |-  ( ( N e. Fin /\ R e. Ring /\ X e. K ) -> E. c e. K ( X .* .1. ) = ( c .* .1. ) ) | 
						
							| 23 | 1 2 13 3 4 6 | scmatel |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( ( X .* .1. ) e. C <-> ( ( X .* .1. ) e. ( Base ` A ) /\ E. c e. K ( X .* .1. ) = ( c .* .1. ) ) ) ) | 
						
							| 24 | 23 | 3adant3 |  |-  ( ( N e. Fin /\ R e. Ring /\ X e. K ) -> ( ( X .* .1. ) e. C <-> ( ( X .* .1. ) e. ( Base ` A ) /\ E. c e. K ( X .* .1. ) = ( c .* .1. ) ) ) ) | 
						
							| 25 | 17 22 24 | mpbir2and |  |-  ( ( N e. Fin /\ R e. Ring /\ X e. K ) -> ( X .* .1. ) e. C ) | 
						
							| 26 | 8 25 | eqeltrd |  |-  ( ( N e. Fin /\ R e. Ring /\ X e. K ) -> ( F ` X ) e. C ) |