| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scmatrhmval.k |  |-  K = ( Base ` R ) | 
						
							| 2 |  | scmatrhmval.a |  |-  A = ( N Mat R ) | 
						
							| 3 |  | scmatrhmval.o |  |-  .1. = ( 1r ` A ) | 
						
							| 4 |  | scmatrhmval.t |  |-  .* = ( .s ` A ) | 
						
							| 5 |  | scmatrhmval.f |  |-  F = ( x e. K |-> ( x .* .1. ) ) | 
						
							| 6 |  | scmatrhmval.c |  |-  C = ( N ScMat R ) | 
						
							| 7 |  | eqid |  |-  ( Base ` A ) = ( Base ` A ) | 
						
							| 8 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 9 | 2 7 1 8 6 | scmatid |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` A ) e. C ) | 
						
							| 10 | 3 9 | eqeltrid |  |-  ( ( N e. Fin /\ R e. Ring ) -> .1. e. C ) | 
						
							| 11 | 10 | anim1ci |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ x e. K ) -> ( x e. K /\ .1. e. C ) ) | 
						
							| 12 | 1 2 6 4 | smatvscl |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. K /\ .1. e. C ) ) -> ( x .* .1. ) e. C ) | 
						
							| 13 | 11 12 | syldan |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ x e. K ) -> ( x .* .1. ) e. C ) | 
						
							| 14 | 13 5 | fmptd |  |-  ( ( N e. Fin /\ R e. Ring ) -> F : K --> C ) |