| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scmatid.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | scmatid.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | scmatid.e |  |-  E = ( Base ` R ) | 
						
							| 4 |  | scmatid.0 |  |-  .0. = ( 0g ` R ) | 
						
							| 5 |  | scmatid.s |  |-  S = ( N ScMat R ) | 
						
							| 6 | 1 | matring |  |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) | 
						
							| 7 |  | eqid |  |-  ( 1r ` A ) = ( 1r ` A ) | 
						
							| 8 | 2 7 | ringidcl |  |-  ( A e. Ring -> ( 1r ` A ) e. B ) | 
						
							| 9 | 6 8 | syl |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` A ) e. B ) | 
						
							| 10 | 1 | matsca2 |  |-  ( ( N e. Fin /\ R e. Ring ) -> R = ( Scalar ` A ) ) | 
						
							| 11 | 10 | eqcomd |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( Scalar ` A ) = R ) | 
						
							| 12 | 11 | fveq2d |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` ( Scalar ` A ) ) = ( 1r ` R ) ) | 
						
							| 13 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 14 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 15 | 13 14 | ringidcl |  |-  ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 16 | 15 | adantl |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 17 | 12 16 | eqeltrd |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` ( Scalar ` A ) ) e. ( Base ` R ) ) | 
						
							| 18 |  | oveq1 |  |-  ( c = ( 1r ` ( Scalar ` A ) ) -> ( c ( .s ` A ) ( 1r ` A ) ) = ( ( 1r ` ( Scalar ` A ) ) ( .s ` A ) ( 1r ` A ) ) ) | 
						
							| 19 | 18 | eqeq2d |  |-  ( c = ( 1r ` ( Scalar ` A ) ) -> ( ( 1r ` A ) = ( c ( .s ` A ) ( 1r ` A ) ) <-> ( 1r ` A ) = ( ( 1r ` ( Scalar ` A ) ) ( .s ` A ) ( 1r ` A ) ) ) ) | 
						
							| 20 | 19 | adantl |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ c = ( 1r ` ( Scalar ` A ) ) ) -> ( ( 1r ` A ) = ( c ( .s ` A ) ( 1r ` A ) ) <-> ( 1r ` A ) = ( ( 1r ` ( Scalar ` A ) ) ( .s ` A ) ( 1r ` A ) ) ) ) | 
						
							| 21 | 1 | matlmod |  |-  ( ( N e. Fin /\ R e. Ring ) -> A e. LMod ) | 
						
							| 22 |  | eqid |  |-  ( Scalar ` A ) = ( Scalar ` A ) | 
						
							| 23 |  | eqid |  |-  ( .s ` A ) = ( .s ` A ) | 
						
							| 24 |  | eqid |  |-  ( 1r ` ( Scalar ` A ) ) = ( 1r ` ( Scalar ` A ) ) | 
						
							| 25 | 2 22 23 24 | lmodvs1 |  |-  ( ( A e. LMod /\ ( 1r ` A ) e. B ) -> ( ( 1r ` ( Scalar ` A ) ) ( .s ` A ) ( 1r ` A ) ) = ( 1r ` A ) ) | 
						
							| 26 | 21 9 25 | syl2anc |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( ( 1r ` ( Scalar ` A ) ) ( .s ` A ) ( 1r ` A ) ) = ( 1r ` A ) ) | 
						
							| 27 | 26 | eqcomd |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` A ) = ( ( 1r ` ( Scalar ` A ) ) ( .s ` A ) ( 1r ` A ) ) ) | 
						
							| 28 | 17 20 27 | rspcedvd |  |-  ( ( N e. Fin /\ R e. Ring ) -> E. c e. ( Base ` R ) ( 1r ` A ) = ( c ( .s ` A ) ( 1r ` A ) ) ) | 
						
							| 29 | 13 1 2 7 23 5 | scmatel |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( ( 1r ` A ) e. S <-> ( ( 1r ` A ) e. B /\ E. c e. ( Base ` R ) ( 1r ` A ) = ( c ( .s ` A ) ( 1r ` A ) ) ) ) ) | 
						
							| 30 | 9 28 29 | mpbir2and |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` A ) e. S ) |