Step |
Hyp |
Ref |
Expression |
1 |
|
scmatid.a |
|- A = ( N Mat R ) |
2 |
|
scmatid.b |
|- B = ( Base ` A ) |
3 |
|
scmatid.e |
|- E = ( Base ` R ) |
4 |
|
scmatid.0 |
|- .0. = ( 0g ` R ) |
5 |
|
scmatid.s |
|- S = ( N ScMat R ) |
6 |
1
|
matring |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
7 |
|
eqid |
|- ( 1r ` A ) = ( 1r ` A ) |
8 |
2 7
|
ringidcl |
|- ( A e. Ring -> ( 1r ` A ) e. B ) |
9 |
6 8
|
syl |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` A ) e. B ) |
10 |
1
|
matsca2 |
|- ( ( N e. Fin /\ R e. Ring ) -> R = ( Scalar ` A ) ) |
11 |
10
|
eqcomd |
|- ( ( N e. Fin /\ R e. Ring ) -> ( Scalar ` A ) = R ) |
12 |
11
|
fveq2d |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` ( Scalar ` A ) ) = ( 1r ` R ) ) |
13 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
14 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
15 |
13 14
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
16 |
15
|
adantl |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` R ) e. ( Base ` R ) ) |
17 |
12 16
|
eqeltrd |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` ( Scalar ` A ) ) e. ( Base ` R ) ) |
18 |
|
oveq1 |
|- ( c = ( 1r ` ( Scalar ` A ) ) -> ( c ( .s ` A ) ( 1r ` A ) ) = ( ( 1r ` ( Scalar ` A ) ) ( .s ` A ) ( 1r ` A ) ) ) |
19 |
18
|
eqeq2d |
|- ( c = ( 1r ` ( Scalar ` A ) ) -> ( ( 1r ` A ) = ( c ( .s ` A ) ( 1r ` A ) ) <-> ( 1r ` A ) = ( ( 1r ` ( Scalar ` A ) ) ( .s ` A ) ( 1r ` A ) ) ) ) |
20 |
19
|
adantl |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ c = ( 1r ` ( Scalar ` A ) ) ) -> ( ( 1r ` A ) = ( c ( .s ` A ) ( 1r ` A ) ) <-> ( 1r ` A ) = ( ( 1r ` ( Scalar ` A ) ) ( .s ` A ) ( 1r ` A ) ) ) ) |
21 |
1
|
matlmod |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. LMod ) |
22 |
|
eqid |
|- ( Scalar ` A ) = ( Scalar ` A ) |
23 |
|
eqid |
|- ( .s ` A ) = ( .s ` A ) |
24 |
|
eqid |
|- ( 1r ` ( Scalar ` A ) ) = ( 1r ` ( Scalar ` A ) ) |
25 |
2 22 23 24
|
lmodvs1 |
|- ( ( A e. LMod /\ ( 1r ` A ) e. B ) -> ( ( 1r ` ( Scalar ` A ) ) ( .s ` A ) ( 1r ` A ) ) = ( 1r ` A ) ) |
26 |
21 9 25
|
syl2anc |
|- ( ( N e. Fin /\ R e. Ring ) -> ( ( 1r ` ( Scalar ` A ) ) ( .s ` A ) ( 1r ` A ) ) = ( 1r ` A ) ) |
27 |
26
|
eqcomd |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` A ) = ( ( 1r ` ( Scalar ` A ) ) ( .s ` A ) ( 1r ` A ) ) ) |
28 |
17 20 27
|
rspcedvd |
|- ( ( N e. Fin /\ R e. Ring ) -> E. c e. ( Base ` R ) ( 1r ` A ) = ( c ( .s ` A ) ( 1r ` A ) ) ) |
29 |
13 1 2 7 23 5
|
scmatel |
|- ( ( N e. Fin /\ R e. Ring ) -> ( ( 1r ` A ) e. S <-> ( ( 1r ` A ) e. B /\ E. c e. ( Base ` R ) ( 1r ` A ) = ( c ( .s ` A ) ( 1r ` A ) ) ) ) ) |
30 |
9 28 29
|
mpbir2and |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` A ) e. S ) |