| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scmatid.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | scmatid.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | scmatid.e | ⊢ 𝐸  =  ( Base ‘ 𝑅 ) | 
						
							| 4 |  | scmatid.0 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 5 |  | scmatid.s | ⊢ 𝑆  =  ( 𝑁  ScMat  𝑅 ) | 
						
							| 6 | 1 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 7 |  | eqid | ⊢ ( 1r ‘ 𝐴 )  =  ( 1r ‘ 𝐴 ) | 
						
							| 8 | 2 7 | ringidcl | ⊢ ( 𝐴  ∈  Ring  →  ( 1r ‘ 𝐴 )  ∈  𝐵 ) | 
						
							| 9 | 6 8 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 1r ‘ 𝐴 )  ∈  𝐵 ) | 
						
							| 10 | 1 | matsca2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑅  =  ( Scalar ‘ 𝐴 ) ) | 
						
							| 11 | 10 | eqcomd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( Scalar ‘ 𝐴 )  =  𝑅 ) | 
						
							| 12 | 11 | fveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 1r ‘ ( Scalar ‘ 𝐴 ) )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 13 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 14 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 15 | 13 14 | ringidcl | ⊢ ( 𝑅  ∈  Ring  →  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 17 | 12 16 | eqeltrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 1r ‘ ( Scalar ‘ 𝐴 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 18 |  | oveq1 | ⊢ ( 𝑐  =  ( 1r ‘ ( Scalar ‘ 𝐴 ) )  →  ( 𝑐 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  =  ( ( 1r ‘ ( Scalar ‘ 𝐴 ) ) (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ) | 
						
							| 19 | 18 | eqeq2d | ⊢ ( 𝑐  =  ( 1r ‘ ( Scalar ‘ 𝐴 ) )  →  ( ( 1r ‘ 𝐴 )  =  ( 𝑐 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  ↔  ( 1r ‘ 𝐴 )  =  ( ( 1r ‘ ( Scalar ‘ 𝐴 ) ) (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ) ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑐  =  ( 1r ‘ ( Scalar ‘ 𝐴 ) ) )  →  ( ( 1r ‘ 𝐴 )  =  ( 𝑐 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  ↔  ( 1r ‘ 𝐴 )  =  ( ( 1r ‘ ( Scalar ‘ 𝐴 ) ) (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ) ) | 
						
							| 21 | 1 | matlmod | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  LMod ) | 
						
							| 22 |  | eqid | ⊢ ( Scalar ‘ 𝐴 )  =  ( Scalar ‘ 𝐴 ) | 
						
							| 23 |  | eqid | ⊢ (  ·𝑠  ‘ 𝐴 )  =  (  ·𝑠  ‘ 𝐴 ) | 
						
							| 24 |  | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝐴 ) )  =  ( 1r ‘ ( Scalar ‘ 𝐴 ) ) | 
						
							| 25 | 2 22 23 24 | lmodvs1 | ⊢ ( ( 𝐴  ∈  LMod  ∧  ( 1r ‘ 𝐴 )  ∈  𝐵 )  →  ( ( 1r ‘ ( Scalar ‘ 𝐴 ) ) (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  =  ( 1r ‘ 𝐴 ) ) | 
						
							| 26 | 21 9 25 | syl2anc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( ( 1r ‘ ( Scalar ‘ 𝐴 ) ) (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  =  ( 1r ‘ 𝐴 ) ) | 
						
							| 27 | 26 | eqcomd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 1r ‘ 𝐴 )  =  ( ( 1r ‘ ( Scalar ‘ 𝐴 ) ) (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ) | 
						
							| 28 | 17 20 27 | rspcedvd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ∃ 𝑐  ∈  ( Base ‘ 𝑅 ) ( 1r ‘ 𝐴 )  =  ( 𝑐 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ) | 
						
							| 29 | 13 1 2 7 23 5 | scmatel | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( ( 1r ‘ 𝐴 )  ∈  𝑆  ↔  ( ( 1r ‘ 𝐴 )  ∈  𝐵  ∧  ∃ 𝑐  ∈  ( Base ‘ 𝑅 ) ( 1r ‘ 𝐴 )  =  ( 𝑐 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ) ) ) | 
						
							| 30 | 9 28 29 | mpbir2and | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 1r ‘ 𝐴 )  ∈  𝑆 ) |