Step |
Hyp |
Ref |
Expression |
1 |
|
scmatid.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
scmatid.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
scmatid.e |
⊢ 𝐸 = ( Base ‘ 𝑅 ) |
4 |
|
scmatid.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
scmatid.s |
⊢ 𝑆 = ( 𝑁 ScMat 𝑅 ) |
6 |
|
scmatdmat.d |
⊢ 𝐷 = ( 𝑁 DMat 𝑅 ) |
7 |
|
id |
⊢ ( ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , 0 ) → ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , 0 ) ) |
8 |
|
ifnefalse |
⊢ ( 𝑖 ≠ 𝑗 → if ( 𝑖 = 𝑗 , 𝑐 , 0 ) = 0 ) |
9 |
7 8
|
sylan9eq |
⊢ ( ( ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , 0 ) ∧ 𝑖 ≠ 𝑗 ) → ( 𝑖 𝑚 𝑗 ) = 0 ) |
10 |
9
|
ex |
⊢ ( ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , 0 ) → ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) ) |
11 |
10
|
a1i |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑚 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐸 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , 0 ) → ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) ) ) |
12 |
11
|
ralimdva |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑚 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐸 ) ∧ 𝑖 ∈ 𝑁 ) → ( ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , 0 ) → ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) ) ) |
13 |
12
|
ralimdva |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑚 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐸 ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , 0 ) → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) ) ) |
14 |
13
|
rexlimdva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑚 ∈ 𝐵 ) → ( ∃ 𝑐 ∈ 𝐸 ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , 0 ) → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) ) ) |
15 |
14
|
ss2rabdv |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → { 𝑚 ∈ 𝐵 ∣ ∃ 𝑐 ∈ 𝐸 ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , 0 ) } ⊆ { 𝑚 ∈ 𝐵 ∣ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) } ) |
16 |
15
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑀 ∈ 𝑆 ) → { 𝑚 ∈ 𝐵 ∣ ∃ 𝑐 ∈ 𝐸 ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , 0 ) } ⊆ { 𝑚 ∈ 𝐵 ∣ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) } ) |
17 |
1 2 5 3 4
|
scmatmats |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 = { 𝑚 ∈ 𝐵 ∣ ∃ 𝑐 ∈ 𝐸 ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , 0 ) } ) |
18 |
1 2 4 6
|
dmatval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐷 = { 𝑚 ∈ 𝐵 ∣ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) } ) |
19 |
17 18
|
sseq12d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑆 ⊆ 𝐷 ↔ { 𝑚 ∈ 𝐵 ∣ ∃ 𝑐 ∈ 𝐸 ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , 0 ) } ⊆ { 𝑚 ∈ 𝐵 ∣ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) } ) ) |
20 |
19
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑀 ∈ 𝑆 ) → ( 𝑆 ⊆ 𝐷 ↔ { 𝑚 ∈ 𝐵 ∣ ∃ 𝑐 ∈ 𝐸 ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , 0 ) } ⊆ { 𝑚 ∈ 𝐵 ∣ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = 0 ) } ) ) |
21 |
16 20
|
mpbird |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑀 ∈ 𝑆 ) → 𝑆 ⊆ 𝐷 ) |
22 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑀 ∈ 𝑆 ) → 𝑀 ∈ 𝑆 ) |
23 |
21 22
|
sseldd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑀 ∈ 𝑆 ) → 𝑀 ∈ 𝐷 ) |
24 |
23
|
ex |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑀 ∈ 𝑆 → 𝑀 ∈ 𝐷 ) ) |