| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scmatid.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | scmatid.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | scmatid.e | ⊢ 𝐸  =  ( Base ‘ 𝑅 ) | 
						
							| 4 |  | scmatid.0 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 5 |  | scmatid.s | ⊢ 𝑆  =  ( 𝑁  ScMat  𝑅 ) | 
						
							| 6 |  | scmatdmat.d | ⊢ 𝐷  =  ( 𝑁  DMat  𝑅 ) | 
						
							| 7 |  | id | ⊢ ( ( 𝑖 𝑚 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,   0  )  →  ( 𝑖 𝑚 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,   0  ) ) | 
						
							| 8 |  | ifnefalse | ⊢ ( 𝑖  ≠  𝑗  →  if ( 𝑖  =  𝑗 ,  𝑐 ,   0  )  =   0  ) | 
						
							| 9 | 7 8 | sylan9eq | ⊢ ( ( ( 𝑖 𝑚 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,   0  )  ∧  𝑖  ≠  𝑗 )  →  ( 𝑖 𝑚 𝑗 )  =   0  ) | 
						
							| 10 | 9 | ex | ⊢ ( ( 𝑖 𝑚 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,   0  )  →  ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑚 𝑗 )  =   0  ) ) | 
						
							| 11 | 10 | a1i | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑚  ∈  𝐵 )  ∧  𝑐  ∈  𝐸 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  →  ( ( 𝑖 𝑚 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,   0  )  →  ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑚 𝑗 )  =   0  ) ) ) | 
						
							| 12 | 11 | ralimdva | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑚  ∈  𝐵 )  ∧  𝑐  ∈  𝐸 )  ∧  𝑖  ∈  𝑁 )  →  ( ∀ 𝑗  ∈  𝑁 ( 𝑖 𝑚 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,   0  )  →  ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑚 𝑗 )  =   0  ) ) ) | 
						
							| 13 | 12 | ralimdva | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑚  ∈  𝐵 )  ∧  𝑐  ∈  𝐸 )  →  ( ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 𝑚 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,   0  )  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑚 𝑗 )  =   0  ) ) ) | 
						
							| 14 | 13 | rexlimdva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑚  ∈  𝐵 )  →  ( ∃ 𝑐  ∈  𝐸 ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 𝑚 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,   0  )  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑚 𝑗 )  =   0  ) ) ) | 
						
							| 15 | 14 | ss2rabdv | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  { 𝑚  ∈  𝐵  ∣  ∃ 𝑐  ∈  𝐸 ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 𝑚 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,   0  ) }  ⊆  { 𝑚  ∈  𝐵  ∣  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑚 𝑗 )  =   0  ) } ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑀  ∈  𝑆 )  →  { 𝑚  ∈  𝐵  ∣  ∃ 𝑐  ∈  𝐸 ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 𝑚 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,   0  ) }  ⊆  { 𝑚  ∈  𝐵  ∣  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑚 𝑗 )  =   0  ) } ) | 
						
							| 17 | 1 2 5 3 4 | scmatmats | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑆  =  { 𝑚  ∈  𝐵  ∣  ∃ 𝑐  ∈  𝐸 ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 𝑚 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,   0  ) } ) | 
						
							| 18 | 1 2 4 6 | dmatval | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐷  =  { 𝑚  ∈  𝐵  ∣  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑚 𝑗 )  =   0  ) } ) | 
						
							| 19 | 17 18 | sseq12d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑆  ⊆  𝐷  ↔  { 𝑚  ∈  𝐵  ∣  ∃ 𝑐  ∈  𝐸 ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 𝑚 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,   0  ) }  ⊆  { 𝑚  ∈  𝐵  ∣  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑚 𝑗 )  =   0  ) } ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑀  ∈  𝑆 )  →  ( 𝑆  ⊆  𝐷  ↔  { 𝑚  ∈  𝐵  ∣  ∃ 𝑐  ∈  𝐸 ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 𝑚 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,   0  ) }  ⊆  { 𝑚  ∈  𝐵  ∣  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑚 𝑗 )  =   0  ) } ) ) | 
						
							| 21 | 16 20 | mpbird | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑀  ∈  𝑆 )  →  𝑆  ⊆  𝐷 ) | 
						
							| 22 |  | simpr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑀  ∈  𝑆 )  →  𝑀  ∈  𝑆 ) | 
						
							| 23 | 21 22 | sseldd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑀  ∈  𝑆 )  →  𝑀  ∈  𝐷 ) | 
						
							| 24 | 23 | ex | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑀  ∈  𝑆  →  𝑀  ∈  𝐷 ) ) |