| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scmatid.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | scmatid.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | scmatid.e | ⊢ 𝐸  =  ( Base ‘ 𝑅 ) | 
						
							| 4 |  | scmatid.0 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 5 |  | scmatid.s | ⊢ 𝑆  =  ( 𝑁  ScMat  𝑅 ) | 
						
							| 6 |  | eqid | ⊢ ( 1r ‘ 𝐴 )  =  ( 1r ‘ 𝐴 ) | 
						
							| 7 |  | eqid | ⊢ (  ·𝑠  ‘ 𝐴 )  =  (  ·𝑠  ‘ 𝐴 ) | 
						
							| 8 | 3 1 2 6 7 5 | scmatscmid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑋  ∈  𝑆 )  →  ∃ 𝑐  ∈  𝐸 𝑋  =  ( 𝑐 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ) | 
						
							| 9 | 8 | 3expa | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑋  ∈  𝑆 )  →  ∃ 𝑐  ∈  𝐸 𝑋  =  ( 𝑐 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ) | 
						
							| 10 | 9 | adantrr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  𝑆 ) )  →  ∃ 𝑐  ∈  𝐸 𝑋  =  ( 𝑐 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ) | 
						
							| 11 | 3 1 2 6 7 5 | scmatscmid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑌  ∈  𝑆 )  →  ∃ 𝑑  ∈  𝐸 𝑌  =  ( 𝑑 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ) | 
						
							| 12 | 11 | 3expia | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑌  ∈  𝑆  →  ∃ 𝑑  ∈  𝐸 𝑌  =  ( 𝑑 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ) ) | 
						
							| 13 |  | oveq12 | ⊢ ( ( 𝑋  =  ( 𝑐 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  ∧  𝑌  =  ( 𝑑 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) )  →  ( 𝑋 ( +g ‘ 𝐴 ) 𝑌 )  =  ( ( 𝑐 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ( +g ‘ 𝐴 ) ( 𝑑 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑑  ∈  𝐸 )  ∧  𝑐  ∈  𝐸 )  ∧  ( 𝑋  =  ( 𝑐 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  ∧  𝑌  =  ( 𝑑 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ) )  →  ( 𝑋 ( +g ‘ 𝐴 ) 𝑌 )  =  ( ( 𝑐 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ( +g ‘ 𝐴 ) ( 𝑑 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ) ) | 
						
							| 15 | 1 | matlmod | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  LMod ) | 
						
							| 16 | 15 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑑  ∈  𝐸 )  ∧  𝑐  ∈  𝐸 )  →  𝐴  ∈  LMod ) | 
						
							| 17 | 1 | matsca2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑅  =  ( Scalar ‘ 𝐴 ) ) | 
						
							| 18 | 17 | fveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( Base ‘ 𝑅 )  =  ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) | 
						
							| 19 | 3 18 | eqtrid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐸  =  ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) | 
						
							| 20 | 19 | eleq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑐  ∈  𝐸  ↔  𝑐  ∈  ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) ) | 
						
							| 21 | 20 | biimpd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑐  ∈  𝐸  →  𝑐  ∈  ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑑  ∈  𝐸 )  →  ( 𝑐  ∈  𝐸  →  𝑐  ∈  ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) ) | 
						
							| 23 | 22 | imp | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑑  ∈  𝐸 )  ∧  𝑐  ∈  𝐸 )  →  𝑐  ∈  ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) | 
						
							| 24 | 19 | eleq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑑  ∈  𝐸  ↔  𝑑  ∈  ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) ) | 
						
							| 25 | 24 | biimpa | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑑  ∈  𝐸 )  →  𝑑  ∈  ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑑  ∈  𝐸 )  ∧  𝑐  ∈  𝐸 )  →  𝑑  ∈  ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) | 
						
							| 27 | 1 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 28 | 2 6 | ringidcl | ⊢ ( 𝐴  ∈  Ring  →  ( 1r ‘ 𝐴 )  ∈  𝐵 ) | 
						
							| 29 | 27 28 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 1r ‘ 𝐴 )  ∈  𝐵 ) | 
						
							| 30 | 29 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑑  ∈  𝐸 )  ∧  𝑐  ∈  𝐸 )  →  ( 1r ‘ 𝐴 )  ∈  𝐵 ) | 
						
							| 31 |  | eqid | ⊢ ( +g ‘ 𝐴 )  =  ( +g ‘ 𝐴 ) | 
						
							| 32 |  | eqid | ⊢ ( Scalar ‘ 𝐴 )  =  ( Scalar ‘ 𝐴 ) | 
						
							| 33 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝐴 ) )  =  ( Base ‘ ( Scalar ‘ 𝐴 ) ) | 
						
							| 34 |  | eqid | ⊢ ( +g ‘ ( Scalar ‘ 𝐴 ) )  =  ( +g ‘ ( Scalar ‘ 𝐴 ) ) | 
						
							| 35 | 2 31 32 7 33 34 | lmodvsdir | ⊢ ( ( 𝐴  ∈  LMod  ∧  ( 𝑐  ∈  ( Base ‘ ( Scalar ‘ 𝐴 ) )  ∧  𝑑  ∈  ( Base ‘ ( Scalar ‘ 𝐴 ) )  ∧  ( 1r ‘ 𝐴 )  ∈  𝐵 ) )  →  ( ( 𝑐 ( +g ‘ ( Scalar ‘ 𝐴 ) ) 𝑑 ) (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  =  ( ( 𝑐 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ( +g ‘ 𝐴 ) ( 𝑑 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ) ) | 
						
							| 36 | 16 23 26 30 35 | syl13anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑑  ∈  𝐸 )  ∧  𝑐  ∈  𝐸 )  →  ( ( 𝑐 ( +g ‘ ( Scalar ‘ 𝐴 ) ) 𝑑 ) (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  =  ( ( 𝑐 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ( +g ‘ 𝐴 ) ( 𝑑 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ) ) | 
						
							| 37 | 36 | eqcomd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑑  ∈  𝐸 )  ∧  𝑐  ∈  𝐸 )  →  ( ( 𝑐 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ( +g ‘ 𝐴 ) ( 𝑑 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) )  =  ( ( 𝑐 ( +g ‘ ( Scalar ‘ 𝐴 ) ) 𝑑 ) (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ) | 
						
							| 38 |  | simpll | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑑  ∈  𝐸 )  ∧  𝑐  ∈  𝐸 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 39 | 17 | eqcomd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( Scalar ‘ 𝐴 )  =  𝑅 ) | 
						
							| 40 | 39 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑑  ∈  𝐸 )  ∧  𝑐  ∈  𝐸 )  →  ( Scalar ‘ 𝐴 )  =  𝑅 ) | 
						
							| 41 | 40 | fveq2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑑  ∈  𝐸 )  ∧  𝑐  ∈  𝐸 )  →  ( +g ‘ ( Scalar ‘ 𝐴 ) )  =  ( +g ‘ 𝑅 ) ) | 
						
							| 42 | 41 | oveqd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑑  ∈  𝐸 )  ∧  𝑐  ∈  𝐸 )  →  ( 𝑐 ( +g ‘ ( Scalar ‘ 𝐴 ) ) 𝑑 )  =  ( 𝑐 ( +g ‘ 𝑅 ) 𝑑 ) ) | 
						
							| 43 |  | ringgrp | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Grp ) | 
						
							| 44 | 43 | adantl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑅  ∈  Grp ) | 
						
							| 45 | 44 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑑  ∈  𝐸 )  ∧  𝑐  ∈  𝐸 )  →  𝑅  ∈  Grp ) | 
						
							| 46 |  | simpr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑑  ∈  𝐸 )  ∧  𝑐  ∈  𝐸 )  →  𝑐  ∈  𝐸 ) | 
						
							| 47 |  | simplr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑑  ∈  𝐸 )  ∧  𝑐  ∈  𝐸 )  →  𝑑  ∈  𝐸 ) | 
						
							| 48 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 49 | 3 48 | grpcl | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝑐  ∈  𝐸  ∧  𝑑  ∈  𝐸 )  →  ( 𝑐 ( +g ‘ 𝑅 ) 𝑑 )  ∈  𝐸 ) | 
						
							| 50 | 45 46 47 49 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑑  ∈  𝐸 )  ∧  𝑐  ∈  𝐸 )  →  ( 𝑐 ( +g ‘ 𝑅 ) 𝑑 )  ∈  𝐸 ) | 
						
							| 51 | 42 50 | eqeltrd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑑  ∈  𝐸 )  ∧  𝑐  ∈  𝐸 )  →  ( 𝑐 ( +g ‘ ( Scalar ‘ 𝐴 ) ) 𝑑 )  ∈  𝐸 ) | 
						
							| 52 | 3 1 2 7 | matvscl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( ( 𝑐 ( +g ‘ ( Scalar ‘ 𝐴 ) ) 𝑑 )  ∈  𝐸  ∧  ( 1r ‘ 𝐴 )  ∈  𝐵 ) )  →  ( ( 𝑐 ( +g ‘ ( Scalar ‘ 𝐴 ) ) 𝑑 ) (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  ∈  𝐵 ) | 
						
							| 53 | 38 51 30 52 | syl12anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑑  ∈  𝐸 )  ∧  𝑐  ∈  𝐸 )  →  ( ( 𝑐 ( +g ‘ ( Scalar ‘ 𝐴 ) ) 𝑑 ) (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  ∈  𝐵 ) | 
						
							| 54 |  | oveq1 | ⊢ ( 𝑒  =  ( 𝑐 ( +g ‘ ( Scalar ‘ 𝐴 ) ) 𝑑 )  →  ( 𝑒 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  =  ( ( 𝑐 ( +g ‘ ( Scalar ‘ 𝐴 ) ) 𝑑 ) (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ) | 
						
							| 55 | 54 | eqeq2d | ⊢ ( 𝑒  =  ( 𝑐 ( +g ‘ ( Scalar ‘ 𝐴 ) ) 𝑑 )  →  ( ( ( 𝑐 ( +g ‘ ( Scalar ‘ 𝐴 ) ) 𝑑 ) (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  =  ( 𝑒 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  ↔  ( ( 𝑐 ( +g ‘ ( Scalar ‘ 𝐴 ) ) 𝑑 ) (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  =  ( ( 𝑐 ( +g ‘ ( Scalar ‘ 𝐴 ) ) 𝑑 ) (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ) ) | 
						
							| 56 | 55 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑑  ∈  𝐸 )  ∧  𝑐  ∈  𝐸 )  ∧  𝑒  =  ( 𝑐 ( +g ‘ ( Scalar ‘ 𝐴 ) ) 𝑑 ) )  →  ( ( ( 𝑐 ( +g ‘ ( Scalar ‘ 𝐴 ) ) 𝑑 ) (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  =  ( 𝑒 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  ↔  ( ( 𝑐 ( +g ‘ ( Scalar ‘ 𝐴 ) ) 𝑑 ) (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  =  ( ( 𝑐 ( +g ‘ ( Scalar ‘ 𝐴 ) ) 𝑑 ) (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ) ) | 
						
							| 57 |  | eqidd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑑  ∈  𝐸 )  ∧  𝑐  ∈  𝐸 )  →  ( ( 𝑐 ( +g ‘ ( Scalar ‘ 𝐴 ) ) 𝑑 ) (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  =  ( ( 𝑐 ( +g ‘ ( Scalar ‘ 𝐴 ) ) 𝑑 ) (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ) | 
						
							| 58 | 51 56 57 | rspcedvd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑑  ∈  𝐸 )  ∧  𝑐  ∈  𝐸 )  →  ∃ 𝑒  ∈  𝐸 ( ( 𝑐 ( +g ‘ ( Scalar ‘ 𝐴 ) ) 𝑑 ) (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  =  ( 𝑒 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ) | 
						
							| 59 | 3 1 2 6 7 5 | scmatel | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( ( ( 𝑐 ( +g ‘ ( Scalar ‘ 𝐴 ) ) 𝑑 ) (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  ∈  𝑆  ↔  ( ( ( 𝑐 ( +g ‘ ( Scalar ‘ 𝐴 ) ) 𝑑 ) (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  ∈  𝐵  ∧  ∃ 𝑒  ∈  𝐸 ( ( 𝑐 ( +g ‘ ( Scalar ‘ 𝐴 ) ) 𝑑 ) (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  =  ( 𝑒 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ) ) ) | 
						
							| 60 | 59 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑑  ∈  𝐸 )  ∧  𝑐  ∈  𝐸 )  →  ( ( ( 𝑐 ( +g ‘ ( Scalar ‘ 𝐴 ) ) 𝑑 ) (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  ∈  𝑆  ↔  ( ( ( 𝑐 ( +g ‘ ( Scalar ‘ 𝐴 ) ) 𝑑 ) (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  ∈  𝐵  ∧  ∃ 𝑒  ∈  𝐸 ( ( 𝑐 ( +g ‘ ( Scalar ‘ 𝐴 ) ) 𝑑 ) (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  =  ( 𝑒 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ) ) ) | 
						
							| 61 | 53 58 60 | mpbir2and | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑑  ∈  𝐸 )  ∧  𝑐  ∈  𝐸 )  →  ( ( 𝑐 ( +g ‘ ( Scalar ‘ 𝐴 ) ) 𝑑 ) (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  ∈  𝑆 ) | 
						
							| 62 | 37 61 | eqeltrd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑑  ∈  𝐸 )  ∧  𝑐  ∈  𝐸 )  →  ( ( 𝑐 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ( +g ‘ 𝐴 ) ( 𝑑 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) )  ∈  𝑆 ) | 
						
							| 63 | 62 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑑  ∈  𝐸 )  ∧  𝑐  ∈  𝐸 )  ∧  ( 𝑋  =  ( 𝑐 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  ∧  𝑌  =  ( 𝑑 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ) )  →  ( ( 𝑐 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ( +g ‘ 𝐴 ) ( 𝑑 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) )  ∈  𝑆 ) | 
						
							| 64 | 14 63 | eqeltrd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑑  ∈  𝐸 )  ∧  𝑐  ∈  𝐸 )  ∧  ( 𝑋  =  ( 𝑐 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  ∧  𝑌  =  ( 𝑑 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ) )  →  ( 𝑋 ( +g ‘ 𝐴 ) 𝑌 )  ∈  𝑆 ) | 
						
							| 65 | 64 | exp32 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑑  ∈  𝐸 )  ∧  𝑐  ∈  𝐸 )  →  ( 𝑋  =  ( 𝑐 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  →  ( 𝑌  =  ( 𝑑 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  →  ( 𝑋 ( +g ‘ 𝐴 ) 𝑌 )  ∈  𝑆 ) ) ) | 
						
							| 66 | 65 | rexlimdva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑑  ∈  𝐸 )  →  ( ∃ 𝑐  ∈  𝐸 𝑋  =  ( 𝑐 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  →  ( 𝑌  =  ( 𝑑 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  →  ( 𝑋 ( +g ‘ 𝐴 ) 𝑌 )  ∈  𝑆 ) ) ) | 
						
							| 67 | 66 | com23 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑑  ∈  𝐸 )  →  ( 𝑌  =  ( 𝑑 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  →  ( ∃ 𝑐  ∈  𝐸 𝑋  =  ( 𝑐 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  →  ( 𝑋 ( +g ‘ 𝐴 ) 𝑌 )  ∈  𝑆 ) ) ) | 
						
							| 68 | 67 | rexlimdva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( ∃ 𝑑  ∈  𝐸 𝑌  =  ( 𝑑 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  →  ( ∃ 𝑐  ∈  𝐸 𝑋  =  ( 𝑐 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  →  ( 𝑋 ( +g ‘ 𝐴 ) 𝑌 )  ∈  𝑆 ) ) ) | 
						
							| 69 | 12 68 | syldc | ⊢ ( 𝑌  ∈  𝑆  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( ∃ 𝑐  ∈  𝐸 𝑋  =  ( 𝑐 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  →  ( 𝑋 ( +g ‘ 𝐴 ) 𝑌 )  ∈  𝑆 ) ) ) | 
						
							| 70 | 69 | adantl | ⊢ ( ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  𝑆 )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( ∃ 𝑐  ∈  𝐸 𝑋  =  ( 𝑐 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  →  ( 𝑋 ( +g ‘ 𝐴 ) 𝑌 )  ∈  𝑆 ) ) ) | 
						
							| 71 | 70 | impcom | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  𝑆 ) )  →  ( ∃ 𝑐  ∈  𝐸 𝑋  =  ( 𝑐 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) )  →  ( 𝑋 ( +g ‘ 𝐴 ) 𝑌 )  ∈  𝑆 ) ) | 
						
							| 72 | 10 71 | mpd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  𝑆 ) )  →  ( 𝑋 ( +g ‘ 𝐴 ) 𝑌 )  ∈  𝑆 ) |