Metamath Proof Explorer


Theorem scmatdmat

Description: A scalar matrix is a diagonal matrix. (Contributed by AV, 20-Aug-2019) (Revised by AV, 19-Dec-2019)

Ref Expression
Hypotheses scmatid.a A = N Mat R
scmatid.b B = Base A
scmatid.e E = Base R
scmatid.0 0 ˙ = 0 R
scmatid.s S = N ScMat R
scmatdmat.d D = N DMat R
Assertion scmatdmat N Fin R Ring M S M D

Proof

Step Hyp Ref Expression
1 scmatid.a A = N Mat R
2 scmatid.b B = Base A
3 scmatid.e E = Base R
4 scmatid.0 0 ˙ = 0 R
5 scmatid.s S = N ScMat R
6 scmatdmat.d D = N DMat R
7 id i m j = if i = j c 0 ˙ i m j = if i = j c 0 ˙
8 ifnefalse i j if i = j c 0 ˙ = 0 ˙
9 7 8 sylan9eq i m j = if i = j c 0 ˙ i j i m j = 0 ˙
10 9 ex i m j = if i = j c 0 ˙ i j i m j = 0 ˙
11 10 a1i N Fin R Ring m B c E i N j N i m j = if i = j c 0 ˙ i j i m j = 0 ˙
12 11 ralimdva N Fin R Ring m B c E i N j N i m j = if i = j c 0 ˙ j N i j i m j = 0 ˙
13 12 ralimdva N Fin R Ring m B c E i N j N i m j = if i = j c 0 ˙ i N j N i j i m j = 0 ˙
14 13 rexlimdva N Fin R Ring m B c E i N j N i m j = if i = j c 0 ˙ i N j N i j i m j = 0 ˙
15 14 ss2rabdv N Fin R Ring m B | c E i N j N i m j = if i = j c 0 ˙ m B | i N j N i j i m j = 0 ˙
16 15 adantr N Fin R Ring M S m B | c E i N j N i m j = if i = j c 0 ˙ m B | i N j N i j i m j = 0 ˙
17 1 2 5 3 4 scmatmats N Fin R Ring S = m B | c E i N j N i m j = if i = j c 0 ˙
18 1 2 4 6 dmatval N Fin R Ring D = m B | i N j N i j i m j = 0 ˙
19 17 18 sseq12d N Fin R Ring S D m B | c E i N j N i m j = if i = j c 0 ˙ m B | i N j N i j i m j = 0 ˙
20 19 adantr N Fin R Ring M S S D m B | c E i N j N i m j = if i = j c 0 ˙ m B | i N j N i j i m j = 0 ˙
21 16 20 mpbird N Fin R Ring M S S D
22 simpr N Fin R Ring M S M S
23 21 22 sseldd N Fin R Ring M S M D
24 23 ex N Fin R Ring M S M D