Metamath Proof Explorer


Theorem scmatdmat

Description: A scalar matrix is a diagonal matrix. (Contributed by AV, 20-Aug-2019) (Revised by AV, 19-Dec-2019)

Ref Expression
Hypotheses scmatid.a A=NMatR
scmatid.b B=BaseA
scmatid.e E=BaseR
scmatid.0 0˙=0R
scmatid.s S=NScMatR
scmatdmat.d D=NDMatR
Assertion scmatdmat NFinRRingMSMD

Proof

Step Hyp Ref Expression
1 scmatid.a A=NMatR
2 scmatid.b B=BaseA
3 scmatid.e E=BaseR
4 scmatid.0 0˙=0R
5 scmatid.s S=NScMatR
6 scmatdmat.d D=NDMatR
7 id imj=ifi=jc0˙imj=ifi=jc0˙
8 ifnefalse ijifi=jc0˙=0˙
9 7 8 sylan9eq imj=ifi=jc0˙ijimj=0˙
10 9 ex imj=ifi=jc0˙ijimj=0˙
11 10 a1i NFinRRingmBcEiNjNimj=ifi=jc0˙ijimj=0˙
12 11 ralimdva NFinRRingmBcEiNjNimj=ifi=jc0˙jNijimj=0˙
13 12 ralimdva NFinRRingmBcEiNjNimj=ifi=jc0˙iNjNijimj=0˙
14 13 rexlimdva NFinRRingmBcEiNjNimj=ifi=jc0˙iNjNijimj=0˙
15 14 ss2rabdv NFinRRingmB|cEiNjNimj=ifi=jc0˙mB|iNjNijimj=0˙
16 15 adantr NFinRRingMSmB|cEiNjNimj=ifi=jc0˙mB|iNjNijimj=0˙
17 1 2 5 3 4 scmatmats NFinRRingS=mB|cEiNjNimj=ifi=jc0˙
18 1 2 4 6 dmatval NFinRRingD=mB|iNjNijimj=0˙
19 17 18 sseq12d NFinRRingSDmB|cEiNjNimj=ifi=jc0˙mB|iNjNijimj=0˙
20 19 adantr NFinRRingMSSDmB|cEiNjNimj=ifi=jc0˙mB|iNjNijimj=0˙
21 16 20 mpbird NFinRRingMSSD
22 simpr NFinRRingMSMS
23 21 22 sseldd NFinRRingMSMD
24 23 ex NFinRRingMSMD