| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scmatrhmval.k |  |-  K = ( Base ` R ) | 
						
							| 2 |  | scmatrhmval.a |  |-  A = ( N Mat R ) | 
						
							| 3 |  | scmatrhmval.o |  |-  .1. = ( 1r ` A ) | 
						
							| 4 |  | scmatrhmval.t |  |-  .* = ( .s ` A ) | 
						
							| 5 |  | scmatrhmval.f |  |-  F = ( x e. K |-> ( x .* .1. ) ) | 
						
							| 6 |  | scmatrhmval.c |  |-  C = ( N ScMat R ) | 
						
							| 7 | 1 2 3 4 5 6 | scmatf |  |-  ( ( N e. Fin /\ R e. Ring ) -> F : K --> C ) | 
						
							| 8 |  | eqid |  |-  ( Base ` A ) = ( Base ` A ) | 
						
							| 9 | 1 2 8 3 4 6 | scmatscmid |  |-  ( ( N e. Fin /\ R e. Ring /\ y e. C ) -> E. c e. K y = ( c .* .1. ) ) | 
						
							| 10 | 9 | 3expa |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ y e. C ) -> E. c e. K y = ( c .* .1. ) ) | 
						
							| 11 | 1 2 3 4 5 | scmatrhmval |  |-  ( ( R e. Ring /\ c e. K ) -> ( F ` c ) = ( c .* .1. ) ) | 
						
							| 12 | 11 | adantll |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ c e. K ) -> ( F ` c ) = ( c .* .1. ) ) | 
						
							| 13 | 12 | eqcomd |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ c e. K ) -> ( c .* .1. ) = ( F ` c ) ) | 
						
							| 14 | 13 | eqeq2d |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ c e. K ) -> ( y = ( c .* .1. ) <-> y = ( F ` c ) ) ) | 
						
							| 15 | 14 | biimpd |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ c e. K ) -> ( y = ( c .* .1. ) -> y = ( F ` c ) ) ) | 
						
							| 16 | 15 | reximdva |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( E. c e. K y = ( c .* .1. ) -> E. c e. K y = ( F ` c ) ) ) | 
						
							| 17 | 16 | adantr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ y e. C ) -> ( E. c e. K y = ( c .* .1. ) -> E. c e. K y = ( F ` c ) ) ) | 
						
							| 18 | 10 17 | mpd |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ y e. C ) -> E. c e. K y = ( F ` c ) ) | 
						
							| 19 | 18 | ralrimiva |  |-  ( ( N e. Fin /\ R e. Ring ) -> A. y e. C E. c e. K y = ( F ` c ) ) | 
						
							| 20 |  | dffo3 |  |-  ( F : K -onto-> C <-> ( F : K --> C /\ A. y e. C E. c e. K y = ( F ` c ) ) ) | 
						
							| 21 | 7 19 20 | sylanbrc |  |-  ( ( N e. Fin /\ R e. Ring ) -> F : K -onto-> C ) |