| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scmatrhmval.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | scmatrhmval.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 3 |  | scmatrhmval.o | ⊢  1   =  ( 1r ‘ 𝐴 ) | 
						
							| 4 |  | scmatrhmval.t | ⊢  ∗   =  (  ·𝑠  ‘ 𝐴 ) | 
						
							| 5 |  | scmatrhmval.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝐾  ↦  ( 𝑥  ∗   1  ) ) | 
						
							| 6 |  | scmatrhmval.c | ⊢ 𝐶  =  ( 𝑁  ScMat  𝑅 ) | 
						
							| 7 | 1 2 3 4 5 6 | scmatf | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐹 : 𝐾 ⟶ 𝐶 ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 ) | 
						
							| 9 | 1 2 8 3 4 6 | scmatscmid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑦  ∈  𝐶 )  →  ∃ 𝑐  ∈  𝐾 𝑦  =  ( 𝑐  ∗   1  ) ) | 
						
							| 10 | 9 | 3expa | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑦  ∈  𝐶 )  →  ∃ 𝑐  ∈  𝐾 𝑦  =  ( 𝑐  ∗   1  ) ) | 
						
							| 11 | 1 2 3 4 5 | scmatrhmval | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑐  ∈  𝐾 )  →  ( 𝐹 ‘ 𝑐 )  =  ( 𝑐  ∗   1  ) ) | 
						
							| 12 | 11 | adantll | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑐  ∈  𝐾 )  →  ( 𝐹 ‘ 𝑐 )  =  ( 𝑐  ∗   1  ) ) | 
						
							| 13 | 12 | eqcomd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑐  ∈  𝐾 )  →  ( 𝑐  ∗   1  )  =  ( 𝐹 ‘ 𝑐 ) ) | 
						
							| 14 | 13 | eqeq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑐  ∈  𝐾 )  →  ( 𝑦  =  ( 𝑐  ∗   1  )  ↔  𝑦  =  ( 𝐹 ‘ 𝑐 ) ) ) | 
						
							| 15 | 14 | biimpd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑐  ∈  𝐾 )  →  ( 𝑦  =  ( 𝑐  ∗   1  )  →  𝑦  =  ( 𝐹 ‘ 𝑐 ) ) ) | 
						
							| 16 | 15 | reximdva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( ∃ 𝑐  ∈  𝐾 𝑦  =  ( 𝑐  ∗   1  )  →  ∃ 𝑐  ∈  𝐾 𝑦  =  ( 𝐹 ‘ 𝑐 ) ) ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑦  ∈  𝐶 )  →  ( ∃ 𝑐  ∈  𝐾 𝑦  =  ( 𝑐  ∗   1  )  →  ∃ 𝑐  ∈  𝐾 𝑦  =  ( 𝐹 ‘ 𝑐 ) ) ) | 
						
							| 18 | 10 17 | mpd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑦  ∈  𝐶 )  →  ∃ 𝑐  ∈  𝐾 𝑦  =  ( 𝐹 ‘ 𝑐 ) ) | 
						
							| 19 | 18 | ralrimiva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ∀ 𝑦  ∈  𝐶 ∃ 𝑐  ∈  𝐾 𝑦  =  ( 𝐹 ‘ 𝑐 ) ) | 
						
							| 20 |  | dffo3 | ⊢ ( 𝐹 : 𝐾 –onto→ 𝐶  ↔  ( 𝐹 : 𝐾 ⟶ 𝐶  ∧  ∀ 𝑦  ∈  𝐶 ∃ 𝑐  ∈  𝐾 𝑦  =  ( 𝐹 ‘ 𝑐 ) ) ) | 
						
							| 21 | 7 19 20 | sylanbrc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐹 : 𝐾 –onto→ 𝐶 ) |