| Step |
Hyp |
Ref |
Expression |
| 1 |
|
scmatrhmval.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
| 2 |
|
scmatrhmval.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 3 |
|
scmatrhmval.o |
⊢ 1 = ( 1r ‘ 𝐴 ) |
| 4 |
|
scmatrhmval.t |
⊢ ∗ = ( ·𝑠 ‘ 𝐴 ) |
| 5 |
|
scmatrhmval.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐾 ↦ ( 𝑥 ∗ 1 ) ) |
| 6 |
|
scmatrhmval.c |
⊢ 𝐶 = ( 𝑁 ScMat 𝑅 ) |
| 7 |
1 2 3 4 5 6
|
scmatf |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐹 : 𝐾 ⟶ 𝐶 ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
| 9 |
1 2 8 3 4 6
|
scmatscmid |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐶 ) → ∃ 𝑐 ∈ 𝐾 𝑦 = ( 𝑐 ∗ 1 ) ) |
| 10 |
9
|
3expa |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑦 ∈ 𝐶 ) → ∃ 𝑐 ∈ 𝐾 𝑦 = ( 𝑐 ∗ 1 ) ) |
| 11 |
1 2 3 4 5
|
scmatrhmval |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑐 ∈ 𝐾 ) → ( 𝐹 ‘ 𝑐 ) = ( 𝑐 ∗ 1 ) ) |
| 12 |
11
|
adantll |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑐 ∈ 𝐾 ) → ( 𝐹 ‘ 𝑐 ) = ( 𝑐 ∗ 1 ) ) |
| 13 |
12
|
eqcomd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑐 ∈ 𝐾 ) → ( 𝑐 ∗ 1 ) = ( 𝐹 ‘ 𝑐 ) ) |
| 14 |
13
|
eqeq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑐 ∈ 𝐾 ) → ( 𝑦 = ( 𝑐 ∗ 1 ) ↔ 𝑦 = ( 𝐹 ‘ 𝑐 ) ) ) |
| 15 |
14
|
biimpd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑐 ∈ 𝐾 ) → ( 𝑦 = ( 𝑐 ∗ 1 ) → 𝑦 = ( 𝐹 ‘ 𝑐 ) ) ) |
| 16 |
15
|
reximdva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ∃ 𝑐 ∈ 𝐾 𝑦 = ( 𝑐 ∗ 1 ) → ∃ 𝑐 ∈ 𝐾 𝑦 = ( 𝐹 ‘ 𝑐 ) ) ) |
| 17 |
16
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑦 ∈ 𝐶 ) → ( ∃ 𝑐 ∈ 𝐾 𝑦 = ( 𝑐 ∗ 1 ) → ∃ 𝑐 ∈ 𝐾 𝑦 = ( 𝐹 ‘ 𝑐 ) ) ) |
| 18 |
10 17
|
mpd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑦 ∈ 𝐶 ) → ∃ 𝑐 ∈ 𝐾 𝑦 = ( 𝐹 ‘ 𝑐 ) ) |
| 19 |
18
|
ralrimiva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ∀ 𝑦 ∈ 𝐶 ∃ 𝑐 ∈ 𝐾 𝑦 = ( 𝐹 ‘ 𝑐 ) ) |
| 20 |
|
dffo3 |
⊢ ( 𝐹 : 𝐾 –onto→ 𝐶 ↔ ( 𝐹 : 𝐾 ⟶ 𝐶 ∧ ∀ 𝑦 ∈ 𝐶 ∃ 𝑐 ∈ 𝐾 𝑦 = ( 𝐹 ‘ 𝑐 ) ) ) |
| 21 |
7 19 20
|
sylanbrc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐹 : 𝐾 –onto→ 𝐶 ) |