| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scmatrhmval.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | scmatrhmval.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 3 |  | scmatrhmval.o | ⊢  1   =  ( 1r ‘ 𝐴 ) | 
						
							| 4 |  | scmatrhmval.t | ⊢  ∗   =  (  ·𝑠  ‘ 𝐴 ) | 
						
							| 5 |  | scmatrhmval.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝐾  ↦  ( 𝑥  ∗   1  ) ) | 
						
							| 6 |  | scmatrhmval.c | ⊢ 𝐶  =  ( 𝑁  ScMat  𝑅 ) | 
						
							| 7 | 1 2 3 4 5 6 | scmatf | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐹 : 𝐾 ⟶ 𝐶 ) | 
						
							| 8 | 7 | 3adant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑁  ≠  ∅  ∧  𝑅  ∈  Ring )  →  𝐹 : 𝐾 ⟶ 𝐶 ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑅  ∈  Ring ) | 
						
							| 10 |  | simpl | ⊢ ( ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 )  →  𝑦  ∈  𝐾 ) | 
						
							| 11 | 1 2 3 4 5 | scmatrhmval | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑦  ∈  𝐾 )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝑦  ∗   1  ) ) | 
						
							| 12 | 9 10 11 | syl2an | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝑦  ∗   1  ) ) | 
						
							| 13 |  | simpr | ⊢ ( ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 )  →  𝑧  ∈  𝐾 ) | 
						
							| 14 | 1 2 3 4 5 | scmatrhmval | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑧  ∈  𝐾 )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝑧  ∗   1  ) ) | 
						
							| 15 | 9 13 14 | syl2an | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝑧  ∗   1  ) ) | 
						
							| 16 | 12 15 | eqeq12d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 )  ↔  ( 𝑦  ∗   1  )  =  ( 𝑧  ∗   1  ) ) ) | 
						
							| 17 | 16 | 3adantl2 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑁  ≠  ∅  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 )  ↔  ( 𝑦  ∗   1  )  =  ( 𝑧  ∗   1  ) ) ) | 
						
							| 18 | 2 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 19 |  | eqid | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 ) | 
						
							| 20 | 19 3 | ringidcl | ⊢ ( 𝐴  ∈  Ring  →   1   ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 21 | 18 20 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →   1   ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 22 | 21 10 | anim12ci | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( 𝑦  ∈  𝐾  ∧   1   ∈  ( Base ‘ 𝐴 ) ) ) | 
						
							| 23 | 1 2 19 4 | matvscl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧   1   ∈  ( Base ‘ 𝐴 ) ) )  →  ( 𝑦  ∗   1  )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 24 | 22 23 | syldan | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( 𝑦  ∗   1  )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 25 | 21 13 | anim12ci | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( 𝑧  ∈  𝐾  ∧   1   ∈  ( Base ‘ 𝐴 ) ) ) | 
						
							| 26 | 1 2 19 4 | matvscl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑧  ∈  𝐾  ∧   1   ∈  ( Base ‘ 𝐴 ) ) )  →  ( 𝑧  ∗   1  )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 27 | 25 26 | syldan | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( 𝑧  ∗   1  )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 28 | 24 27 | jca | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( ( 𝑦  ∗   1  )  ∈  ( Base ‘ 𝐴 )  ∧  ( 𝑧  ∗   1  )  ∈  ( Base ‘ 𝐴 ) ) ) | 
						
							| 29 | 28 | 3adantl2 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑁  ≠  ∅  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( ( 𝑦  ∗   1  )  ∈  ( Base ‘ 𝐴 )  ∧  ( 𝑧  ∗   1  )  ∈  ( Base ‘ 𝐴 ) ) ) | 
						
							| 30 | 2 19 | eqmat | ⊢ ( ( ( 𝑦  ∗   1  )  ∈  ( Base ‘ 𝐴 )  ∧  ( 𝑧  ∗   1  )  ∈  ( Base ‘ 𝐴 ) )  →  ( ( 𝑦  ∗   1  )  =  ( 𝑧  ∗   1  )  ↔  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 ( 𝑦  ∗   1  ) 𝑗 )  =  ( 𝑖 ( 𝑧  ∗   1  ) 𝑗 ) ) ) | 
						
							| 31 | 29 30 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑁  ≠  ∅  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( ( 𝑦  ∗   1  )  =  ( 𝑧  ∗   1  )  ↔  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 ( 𝑦  ∗   1  ) 𝑗 )  =  ( 𝑖 ( 𝑧  ∗   1  ) 𝑗 ) ) ) | 
						
							| 32 |  | difsnid | ⊢ ( 𝑖  ∈  𝑁  →  ( ( 𝑁  ∖  { 𝑖 } )  ∪  { 𝑖 } )  =  𝑁 ) | 
						
							| 33 | 32 | eqcomd | ⊢ ( 𝑖  ∈  𝑁  →  𝑁  =  ( ( 𝑁  ∖  { 𝑖 } )  ∪  { 𝑖 } ) ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  ∧  𝑖  ∈  𝑁 )  →  𝑁  =  ( ( 𝑁  ∖  { 𝑖 } )  ∪  { 𝑖 } ) ) | 
						
							| 35 | 34 | raleqdv | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  ∧  𝑖  ∈  𝑁 )  →  ( ∀ 𝑗  ∈  𝑁 ( 𝑖 ( 𝑦  ∗   1  ) 𝑗 )  =  ( 𝑖 ( 𝑧  ∗   1  ) 𝑗 )  ↔  ∀ 𝑗  ∈  ( ( 𝑁  ∖  { 𝑖 } )  ∪  { 𝑖 } ) ( 𝑖 ( 𝑦  ∗   1  ) 𝑗 )  =  ( 𝑖 ( 𝑧  ∗   1  ) 𝑗 ) ) ) | 
						
							| 36 |  | oveq2 | ⊢ ( 𝑗  =  𝑖  →  ( 𝑖 ( 𝑦  ∗   1  ) 𝑗 )  =  ( 𝑖 ( 𝑦  ∗   1  ) 𝑖 ) ) | 
						
							| 37 |  | oveq2 | ⊢ ( 𝑗  =  𝑖  →  ( 𝑖 ( 𝑧  ∗   1  ) 𝑗 )  =  ( 𝑖 ( 𝑧  ∗   1  ) 𝑖 ) ) | 
						
							| 38 | 36 37 | eqeq12d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝑖 ( 𝑦  ∗   1  ) 𝑗 )  =  ( 𝑖 ( 𝑧  ∗   1  ) 𝑗 )  ↔  ( 𝑖 ( 𝑦  ∗   1  ) 𝑖 )  =  ( 𝑖 ( 𝑧  ∗   1  ) 𝑖 ) ) ) | 
						
							| 39 | 38 | ralunsn | ⊢ ( 𝑖  ∈  𝑁  →  ( ∀ 𝑗  ∈  ( ( 𝑁  ∖  { 𝑖 } )  ∪  { 𝑖 } ) ( 𝑖 ( 𝑦  ∗   1  ) 𝑗 )  =  ( 𝑖 ( 𝑧  ∗   1  ) 𝑗 )  ↔  ( ∀ 𝑗  ∈  ( 𝑁  ∖  { 𝑖 } ) ( 𝑖 ( 𝑦  ∗   1  ) 𝑗 )  =  ( 𝑖 ( 𝑧  ∗   1  ) 𝑗 )  ∧  ( 𝑖 ( 𝑦  ∗   1  ) 𝑖 )  =  ( 𝑖 ( 𝑧  ∗   1  ) 𝑖 ) ) ) ) | 
						
							| 40 | 39 | adantl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  ∧  𝑖  ∈  𝑁 )  →  ( ∀ 𝑗  ∈  ( ( 𝑁  ∖  { 𝑖 } )  ∪  { 𝑖 } ) ( 𝑖 ( 𝑦  ∗   1  ) 𝑗 )  =  ( 𝑖 ( 𝑧  ∗   1  ) 𝑗 )  ↔  ( ∀ 𝑗  ∈  ( 𝑁  ∖  { 𝑖 } ) ( 𝑖 ( 𝑦  ∗   1  ) 𝑗 )  =  ( 𝑖 ( 𝑧  ∗   1  ) 𝑗 )  ∧  ( 𝑖 ( 𝑦  ∗   1  ) 𝑖 )  =  ( 𝑖 ( 𝑧  ∗   1  ) 𝑖 ) ) ) ) | 
						
							| 41 | 10 | anim2i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑦  ∈  𝐾 ) ) | 
						
							| 42 |  | df-3an | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑦  ∈  𝐾 )  ↔  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑦  ∈  𝐾 ) ) | 
						
							| 43 | 41 42 | sylibr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑦  ∈  𝐾 ) ) | 
						
							| 44 |  | id | ⊢ ( 𝑖  ∈  𝑁  →  𝑖  ∈  𝑁 ) | 
						
							| 45 | 44 44 | jca | ⊢ ( 𝑖  ∈  𝑁  →  ( 𝑖  ∈  𝑁  ∧  𝑖  ∈  𝑁 ) ) | 
						
							| 46 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 47 | 2 1 46 3 4 | scmatscmide | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑦  ∈  𝐾 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑖  ∈  𝑁 ) )  →  ( 𝑖 ( 𝑦  ∗   1  ) 𝑖 )  =  if ( 𝑖  =  𝑖 ,  𝑦 ,  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 48 | 43 45 47 | syl2an | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  ∧  𝑖  ∈  𝑁 )  →  ( 𝑖 ( 𝑦  ∗   1  ) 𝑖 )  =  if ( 𝑖  =  𝑖 ,  𝑦 ,  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 49 |  | eqid | ⊢ 𝑖  =  𝑖 | 
						
							| 50 | 49 | iftruei | ⊢ if ( 𝑖  =  𝑖 ,  𝑦 ,  ( 0g ‘ 𝑅 ) )  =  𝑦 | 
						
							| 51 | 48 50 | eqtrdi | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  ∧  𝑖  ∈  𝑁 )  →  ( 𝑖 ( 𝑦  ∗   1  ) 𝑖 )  =  𝑦 ) | 
						
							| 52 | 13 | anim2i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑧  ∈  𝐾 ) ) | 
						
							| 53 |  | df-3an | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑧  ∈  𝐾 )  ↔  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑧  ∈  𝐾 ) ) | 
						
							| 54 | 52 53 | sylibr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑧  ∈  𝐾 ) ) | 
						
							| 55 | 2 1 46 3 4 | scmatscmide | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑧  ∈  𝐾 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑖  ∈  𝑁 ) )  →  ( 𝑖 ( 𝑧  ∗   1  ) 𝑖 )  =  if ( 𝑖  =  𝑖 ,  𝑧 ,  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 56 | 54 45 55 | syl2an | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  ∧  𝑖  ∈  𝑁 )  →  ( 𝑖 ( 𝑧  ∗   1  ) 𝑖 )  =  if ( 𝑖  =  𝑖 ,  𝑧 ,  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 57 | 49 | iftruei | ⊢ if ( 𝑖  =  𝑖 ,  𝑧 ,  ( 0g ‘ 𝑅 ) )  =  𝑧 | 
						
							| 58 | 56 57 | eqtrdi | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  ∧  𝑖  ∈  𝑁 )  →  ( 𝑖 ( 𝑧  ∗   1  ) 𝑖 )  =  𝑧 ) | 
						
							| 59 | 51 58 | eqeq12d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  ∧  𝑖  ∈  𝑁 )  →  ( ( 𝑖 ( 𝑦  ∗   1  ) 𝑖 )  =  ( 𝑖 ( 𝑧  ∗   1  ) 𝑖 )  ↔  𝑦  =  𝑧 ) ) | 
						
							| 60 | 59 | anbi2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  ∧  𝑖  ∈  𝑁 )  →  ( ( ∀ 𝑗  ∈  ( 𝑁  ∖  { 𝑖 } ) ( 𝑖 ( 𝑦  ∗   1  ) 𝑗 )  =  ( 𝑖 ( 𝑧  ∗   1  ) 𝑗 )  ∧  ( 𝑖 ( 𝑦  ∗   1  ) 𝑖 )  =  ( 𝑖 ( 𝑧  ∗   1  ) 𝑖 ) )  ↔  ( ∀ 𝑗  ∈  ( 𝑁  ∖  { 𝑖 } ) ( 𝑖 ( 𝑦  ∗   1  ) 𝑗 )  =  ( 𝑖 ( 𝑧  ∗   1  ) 𝑗 )  ∧  𝑦  =  𝑧 ) ) ) | 
						
							| 61 | 35 40 60 | 3bitrd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  ∧  𝑖  ∈  𝑁 )  →  ( ∀ 𝑗  ∈  𝑁 ( 𝑖 ( 𝑦  ∗   1  ) 𝑗 )  =  ( 𝑖 ( 𝑧  ∗   1  ) 𝑗 )  ↔  ( ∀ 𝑗  ∈  ( 𝑁  ∖  { 𝑖 } ) ( 𝑖 ( 𝑦  ∗   1  ) 𝑗 )  =  ( 𝑖 ( 𝑧  ∗   1  ) 𝑗 )  ∧  𝑦  =  𝑧 ) ) ) | 
						
							| 62 | 61 | ralbidva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 ( 𝑦  ∗   1  ) 𝑗 )  =  ( 𝑖 ( 𝑧  ∗   1  ) 𝑗 )  ↔  ∀ 𝑖  ∈  𝑁 ( ∀ 𝑗  ∈  ( 𝑁  ∖  { 𝑖 } ) ( 𝑖 ( 𝑦  ∗   1  ) 𝑗 )  =  ( 𝑖 ( 𝑧  ∗   1  ) 𝑗 )  ∧  𝑦  =  𝑧 ) ) ) | 
						
							| 63 | 62 | 3adantl2 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑁  ≠  ∅  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 ( 𝑦  ∗   1  ) 𝑗 )  =  ( 𝑖 ( 𝑧  ∗   1  ) 𝑗 )  ↔  ∀ 𝑖  ∈  𝑁 ( ∀ 𝑗  ∈  ( 𝑁  ∖  { 𝑖 } ) ( 𝑖 ( 𝑦  ∗   1  ) 𝑗 )  =  ( 𝑖 ( 𝑧  ∗   1  ) 𝑗 )  ∧  𝑦  =  𝑧 ) ) ) | 
						
							| 64 |  | r19.26 | ⊢ ( ∀ 𝑖  ∈  𝑁 ( ∀ 𝑗  ∈  ( 𝑁  ∖  { 𝑖 } ) ( 𝑖 ( 𝑦  ∗   1  ) 𝑗 )  =  ( 𝑖 ( 𝑧  ∗   1  ) 𝑗 )  ∧  𝑦  =  𝑧 )  ↔  ( ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  ( 𝑁  ∖  { 𝑖 } ) ( 𝑖 ( 𝑦  ∗   1  ) 𝑗 )  =  ( 𝑖 ( 𝑧  ∗   1  ) 𝑗 )  ∧  ∀ 𝑖  ∈  𝑁 𝑦  =  𝑧 ) ) | 
						
							| 65 |  | rspn0 | ⊢ ( 𝑁  ≠  ∅  →  ( ∀ 𝑖  ∈  𝑁 𝑦  =  𝑧  →  𝑦  =  𝑧 ) ) | 
						
							| 66 | 65 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑁  ≠  ∅  ∧  𝑅  ∈  Ring )  →  ( ∀ 𝑖  ∈  𝑁 𝑦  =  𝑧  →  𝑦  =  𝑧 ) ) | 
						
							| 67 | 66 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑁  ≠  ∅  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( ∀ 𝑖  ∈  𝑁 𝑦  =  𝑧  →  𝑦  =  𝑧 ) ) | 
						
							| 68 | 67 | com12 | ⊢ ( ∀ 𝑖  ∈  𝑁 𝑦  =  𝑧  →  ( ( ( 𝑁  ∈  Fin  ∧  𝑁  ≠  ∅  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  𝑦  =  𝑧 ) ) | 
						
							| 69 | 64 68 | simplbiim | ⊢ ( ∀ 𝑖  ∈  𝑁 ( ∀ 𝑗  ∈  ( 𝑁  ∖  { 𝑖 } ) ( 𝑖 ( 𝑦  ∗   1  ) 𝑗 )  =  ( 𝑖 ( 𝑧  ∗   1  ) 𝑗 )  ∧  𝑦  =  𝑧 )  →  ( ( ( 𝑁  ∈  Fin  ∧  𝑁  ≠  ∅  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  𝑦  =  𝑧 ) ) | 
						
							| 70 | 69 | com12 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑁  ≠  ∅  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( ∀ 𝑖  ∈  𝑁 ( ∀ 𝑗  ∈  ( 𝑁  ∖  { 𝑖 } ) ( 𝑖 ( 𝑦  ∗   1  ) 𝑗 )  =  ( 𝑖 ( 𝑧  ∗   1  ) 𝑗 )  ∧  𝑦  =  𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 71 | 63 70 | sylbid | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑁  ≠  ∅  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 ( 𝑦  ∗   1  ) 𝑗 )  =  ( 𝑖 ( 𝑧  ∗   1  ) 𝑗 )  →  𝑦  =  𝑧 ) ) | 
						
							| 72 | 31 71 | sylbid | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑁  ≠  ∅  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( ( 𝑦  ∗   1  )  =  ( 𝑧  ∗   1  )  →  𝑦  =  𝑧 ) ) | 
						
							| 73 | 17 72 | sylbid | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑁  ≠  ∅  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 74 | 73 | ralrimivva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑁  ≠  ∅  ∧  𝑅  ∈  Ring )  →  ∀ 𝑦  ∈  𝐾 ∀ 𝑧  ∈  𝐾 ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 75 |  | dff13 | ⊢ ( 𝐹 : 𝐾 –1-1→ 𝐶  ↔  ( 𝐹 : 𝐾 ⟶ 𝐶  ∧  ∀ 𝑦  ∈  𝐾 ∀ 𝑧  ∈  𝐾 ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 76 | 8 74 75 | sylanbrc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑁  ≠  ∅  ∧  𝑅  ∈  Ring )  →  𝐹 : 𝐾 –1-1→ 𝐶 ) |