| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scmatrhmval.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | scmatrhmval.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 3 |  | scmatrhmval.o | ⊢  1   =  ( 1r ‘ 𝐴 ) | 
						
							| 4 |  | scmatrhmval.t | ⊢  ∗   =  (  ·𝑠  ‘ 𝐴 ) | 
						
							| 5 |  | scmatrhmval.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝐾  ↦  ( 𝑥  ∗   1  ) ) | 
						
							| 6 |  | scmatrhmval.c | ⊢ 𝐶  =  ( 𝑁  ScMat  𝑅 ) | 
						
							| 7 | 1 2 3 4 5 6 | scmatf1 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑁  ≠  ∅  ∧  𝑅  ∈  Ring )  →  𝐹 : 𝐾 –1-1→ 𝐶 ) | 
						
							| 8 | 1 2 3 4 5 6 | scmatfo | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐹 : 𝐾 –onto→ 𝐶 ) | 
						
							| 9 | 8 | 3adant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑁  ≠  ∅  ∧  𝑅  ∈  Ring )  →  𝐹 : 𝐾 –onto→ 𝐶 ) | 
						
							| 10 |  | df-f1o | ⊢ ( 𝐹 : 𝐾 –1-1-onto→ 𝐶  ↔  ( 𝐹 : 𝐾 –1-1→ 𝐶  ∧  𝐹 : 𝐾 –onto→ 𝐶 ) ) | 
						
							| 11 | 7 9 10 | sylanbrc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑁  ≠  ∅  ∧  𝑅  ∈  Ring )  →  𝐹 : 𝐾 –1-1-onto→ 𝐶 ) |