Metamath Proof Explorer


Theorem scmatf1o

Description: There is a bijection between a ring and any ring of scalar matrices with positive dimension over this ring. (Contributed by AV, 26-Dec-2019)

Ref Expression
Hypotheses scmatrhmval.k 𝐾 = ( Base ‘ 𝑅 )
scmatrhmval.a 𝐴 = ( 𝑁 Mat 𝑅 )
scmatrhmval.o 1 = ( 1r𝐴 )
scmatrhmval.t = ( ·𝑠𝐴 )
scmatrhmval.f 𝐹 = ( 𝑥𝐾 ↦ ( 𝑥 1 ) )
scmatrhmval.c 𝐶 = ( 𝑁 ScMat 𝑅 )
Assertion scmatf1o ( ( 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring ) → 𝐹 : 𝐾1-1-onto𝐶 )

Proof

Step Hyp Ref Expression
1 scmatrhmval.k 𝐾 = ( Base ‘ 𝑅 )
2 scmatrhmval.a 𝐴 = ( 𝑁 Mat 𝑅 )
3 scmatrhmval.o 1 = ( 1r𝐴 )
4 scmatrhmval.t = ( ·𝑠𝐴 )
5 scmatrhmval.f 𝐹 = ( 𝑥𝐾 ↦ ( 𝑥 1 ) )
6 scmatrhmval.c 𝐶 = ( 𝑁 ScMat 𝑅 )
7 1 2 3 4 5 6 scmatf1 ( ( 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring ) → 𝐹 : 𝐾1-1𝐶 )
8 1 2 3 4 5 6 scmatfo ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐹 : 𝐾onto𝐶 )
9 8 3adant2 ( ( 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring ) → 𝐹 : 𝐾onto𝐶 )
10 df-f1o ( 𝐹 : 𝐾1-1-onto𝐶 ↔ ( 𝐹 : 𝐾1-1𝐶𝐹 : 𝐾onto𝐶 ) )
11 7 9 10 sylanbrc ( ( 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring ) → 𝐹 : 𝐾1-1-onto𝐶 )