| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scmatrhmval.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | scmatrhmval.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 3 |  | scmatrhmval.o | ⊢  1   =  ( 1r ‘ 𝐴 ) | 
						
							| 4 |  | scmatrhmval.t | ⊢  ∗   =  (  ·𝑠  ‘ 𝐴 ) | 
						
							| 5 |  | scmatrhmval.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝐾  ↦  ( 𝑥  ∗   1  ) ) | 
						
							| 6 |  | scmatrhmval.c | ⊢ 𝐶  =  ( 𝑁  ScMat  𝑅 ) | 
						
							| 7 |  | scmatghm.s | ⊢ 𝑆  =  ( 𝐴  ↾s  𝐶 ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 9 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 10 |  | eqid | ⊢ ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑆 ) | 
						
							| 11 |  | ringgrp | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Grp ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑅  ∈  Grp ) | 
						
							| 13 |  | eqid | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 ) | 
						
							| 14 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 15 | 2 13 1 14 6 | scmatsgrp | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐶  ∈  ( SubGrp ‘ 𝐴 ) ) | 
						
							| 16 | 7 | subggrp | ⊢ ( 𝐶  ∈  ( SubGrp ‘ 𝐴 )  →  𝑆  ∈  Grp ) | 
						
							| 17 | 15 16 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑆  ∈  Grp ) | 
						
							| 18 | 1 2 3 4 5 6 | scmatf | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐹 : 𝐾 ⟶ 𝐶 ) | 
						
							| 19 | 2 6 7 | scmatstrbas | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( Base ‘ 𝑆 )  =  𝐶 ) | 
						
							| 20 | 19 | feq3d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝐹 : 𝐾 ⟶ ( Base ‘ 𝑆 )  ↔  𝐹 : 𝐾 ⟶ 𝐶 ) ) | 
						
							| 21 | 18 20 | mpbird | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐹 : 𝐾 ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 22 | 2 | matsca2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑅  =  ( Scalar ‘ 𝐴 ) ) | 
						
							| 23 | 6 | ovexi | ⊢ 𝐶  ∈  V | 
						
							| 24 |  | eqid | ⊢ ( Scalar ‘ 𝐴 )  =  ( Scalar ‘ 𝐴 ) | 
						
							| 25 | 7 24 | resssca | ⊢ ( 𝐶  ∈  V  →  ( Scalar ‘ 𝐴 )  =  ( Scalar ‘ 𝑆 ) ) | 
						
							| 26 | 23 25 | mp1i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( Scalar ‘ 𝐴 )  =  ( Scalar ‘ 𝑆 ) ) | 
						
							| 27 | 22 26 | eqtrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑅  =  ( Scalar ‘ 𝑆 ) ) | 
						
							| 28 | 27 | fveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( +g ‘ 𝑅 )  =  ( +g ‘ ( Scalar ‘ 𝑆 ) ) ) | 
						
							| 29 | 28 | oveqd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 )  =  ( 𝑦 ( +g ‘ ( Scalar ‘ 𝑆 ) ) 𝑧 ) ) | 
						
							| 30 | 29 | oveq1d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 )  ∗   1  )  =  ( ( 𝑦 ( +g ‘ ( Scalar ‘ 𝑆 ) ) 𝑧 )  ∗   1  ) ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 )  ∗   1  )  =  ( ( 𝑦 ( +g ‘ ( Scalar ‘ 𝑆 ) ) 𝑧 )  ∗   1  ) ) | 
						
							| 32 | 2 | matlmod | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  LMod ) | 
						
							| 33 | 2 6 | scmatlss | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐶  ∈  ( LSubSp ‘ 𝐴 ) ) | 
						
							| 34 |  | eqid | ⊢ ( LSubSp ‘ 𝐴 )  =  ( LSubSp ‘ 𝐴 ) | 
						
							| 35 | 7 34 | lsslmod | ⊢ ( ( 𝐴  ∈  LMod  ∧  𝐶  ∈  ( LSubSp ‘ 𝐴 ) )  →  𝑆  ∈  LMod ) | 
						
							| 36 | 32 33 35 | syl2anc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑆  ∈  LMod ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  𝑆  ∈  LMod ) | 
						
							| 38 | 27 | fveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( Base ‘ 𝑅 )  =  ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) | 
						
							| 39 | 1 38 | eqtrid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐾  =  ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) | 
						
							| 40 | 39 | eleq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑦  ∈  𝐾  ↔  𝑦  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) | 
						
							| 41 | 40 | biimpd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑦  ∈  𝐾  →  𝑦  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) | 
						
							| 42 | 41 | adantrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 )  →  𝑦  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) | 
						
							| 43 | 42 | imp | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  𝑦  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) | 
						
							| 44 | 39 | eleq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑧  ∈  𝐾  ↔  𝑧  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) | 
						
							| 45 | 44 | biimpd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑧  ∈  𝐾  →  𝑧  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) | 
						
							| 46 | 45 | adantld | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 )  →  𝑧  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) | 
						
							| 47 | 46 | imp | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  𝑧  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) | 
						
							| 48 | 2 13 1 14 6 | scmatid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 1r ‘ 𝐴 )  ∈  𝐶 ) | 
						
							| 49 | 3 | a1i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →   1   =  ( 1r ‘ 𝐴 ) ) | 
						
							| 50 | 48 49 19 | 3eltr4d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →   1   ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →   1   ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 52 |  | eqid | ⊢ ( Scalar ‘ 𝑆 )  =  ( Scalar ‘ 𝑆 ) | 
						
							| 53 | 7 4 | ressvsca | ⊢ ( 𝐶  ∈  V  →   ∗   =  (  ·𝑠  ‘ 𝑆 ) ) | 
						
							| 54 | 23 53 | ax-mp | ⊢  ∗   =  (  ·𝑠  ‘ 𝑆 ) | 
						
							| 55 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑆 ) )  =  ( Base ‘ ( Scalar ‘ 𝑆 ) ) | 
						
							| 56 |  | eqid | ⊢ ( +g ‘ ( Scalar ‘ 𝑆 ) )  =  ( +g ‘ ( Scalar ‘ 𝑆 ) ) | 
						
							| 57 | 8 10 52 54 55 56 | lmodvsdir | ⊢ ( ( 𝑆  ∈  LMod  ∧  ( 𝑦  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) )  ∧  𝑧  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) )  ∧   1   ∈  ( Base ‘ 𝑆 ) ) )  →  ( ( 𝑦 ( +g ‘ ( Scalar ‘ 𝑆 ) ) 𝑧 )  ∗   1  )  =  ( ( 𝑦  ∗   1  ) ( +g ‘ 𝑆 ) ( 𝑧  ∗   1  ) ) ) | 
						
							| 58 | 37 43 47 51 57 | syl13anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( ( 𝑦 ( +g ‘ ( Scalar ‘ 𝑆 ) ) 𝑧 )  ∗   1  )  =  ( ( 𝑦  ∗   1  ) ( +g ‘ 𝑆 ) ( 𝑧  ∗   1  ) ) ) | 
						
							| 59 | 31 58 | eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 )  ∗   1  )  =  ( ( 𝑦  ∗   1  ) ( +g ‘ 𝑆 ) ( 𝑧  ∗   1  ) ) ) | 
						
							| 60 |  | simpr | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑅  ∈  Ring ) | 
						
							| 61 | 60 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  𝑅  ∈  Ring ) | 
						
							| 62 | 60 | anim1i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( 𝑅  ∈  Ring  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) ) ) | 
						
							| 63 |  | 3anass | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 )  ↔  ( 𝑅  ∈  Ring  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) ) ) | 
						
							| 64 | 62 63 | sylibr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( 𝑅  ∈  Ring  ∧  𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) ) | 
						
							| 65 | 1 9 | ringacl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 )  →  ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 )  ∈  𝐾 ) | 
						
							| 66 | 64 65 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 )  ∈  𝐾 ) | 
						
							| 67 | 1 2 3 4 5 | scmatrhmval | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 )  ∈  𝐾 )  →  ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) )  =  ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 )  ∗   1  ) ) | 
						
							| 68 | 61 66 67 | syl2anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) )  =  ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 )  ∗   1  ) ) | 
						
							| 69 | 1 2 3 4 5 | scmatrhmval | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑦  ∈  𝐾 )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝑦  ∗   1  ) ) | 
						
							| 70 | 69 | ad2ant2lr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝑦  ∗   1  ) ) | 
						
							| 71 | 1 2 3 4 5 | scmatrhmval | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑧  ∈  𝐾 )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝑧  ∗   1  ) ) | 
						
							| 72 | 71 | ad2ant2l | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝑧  ∗   1  ) ) | 
						
							| 73 | 70 72 | oveq12d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑧 ) )  =  ( ( 𝑦  ∗   1  ) ( +g ‘ 𝑆 ) ( 𝑧  ∗   1  ) ) ) | 
						
							| 74 | 59 68 73 | 3eqtr4d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) )  =  ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 75 | 1 8 9 10 12 17 21 74 | isghmd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐹  ∈  ( 𝑅  GrpHom  𝑆 ) ) |