| Step |
Hyp |
Ref |
Expression |
| 1 |
|
scmatrhmval.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
| 2 |
|
scmatrhmval.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 3 |
|
scmatrhmval.o |
⊢ 1 = ( 1r ‘ 𝐴 ) |
| 4 |
|
scmatrhmval.t |
⊢ ∗ = ( ·𝑠 ‘ 𝐴 ) |
| 5 |
|
scmatrhmval.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐾 ↦ ( 𝑥 ∗ 1 ) ) |
| 6 |
|
scmatrhmval.c |
⊢ 𝐶 = ( 𝑁 ScMat 𝑅 ) |
| 7 |
|
scmatghm.s |
⊢ 𝑆 = ( 𝐴 ↾s 𝐶 ) |
| 8 |
|
scmatmhm.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
| 9 |
|
scmatmhm.t |
⊢ 𝑇 = ( mulGrp ‘ 𝑆 ) |
| 10 |
8
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → 𝑀 ∈ Mnd ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑀 ∈ Mnd ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
| 13 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 14 |
2 12 1 13 6
|
scmatsrng |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶 ∈ ( SubRing ‘ 𝐴 ) ) |
| 15 |
7
|
subrgring |
⊢ ( 𝐶 ∈ ( SubRing ‘ 𝐴 ) → 𝑆 ∈ Ring ) |
| 16 |
9
|
ringmgp |
⊢ ( 𝑆 ∈ Ring → 𝑇 ∈ Mnd ) |
| 17 |
14 15 16
|
3syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 ∈ Mnd ) |
| 18 |
1 2 3 4 5 6
|
scmatf |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐹 : 𝐾 ⟶ 𝐶 ) |
| 19 |
2 6 7
|
scmatstrbas |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Base ‘ 𝑆 ) = 𝐶 ) |
| 20 |
19
|
feq3d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝐹 : 𝐾 ⟶ ( Base ‘ 𝑆 ) ↔ 𝐹 : 𝐾 ⟶ 𝐶 ) ) |
| 21 |
18 20
|
mpbird |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐹 : 𝐾 ⟶ ( Base ‘ 𝑆 ) ) |
| 22 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 23 |
|
eqid |
⊢ ( .r ‘ 𝐴 ) = ( .r ‘ 𝐴 ) |
| 24 |
2 1 13 3 4 22 23
|
scmatscmiddistr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) → ( ( 𝑦 ∗ 1 ) ( .r ‘ 𝐴 ) ( 𝑧 ∗ 1 ) ) = ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∗ 1 ) ) |
| 25 |
7 23
|
ressmulr |
⊢ ( 𝐶 ∈ ( SubRing ‘ 𝐴 ) → ( .r ‘ 𝐴 ) = ( .r ‘ 𝑆 ) ) |
| 26 |
14 25
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( .r ‘ 𝐴 ) = ( .r ‘ 𝑆 ) ) |
| 27 |
26
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) → ( .r ‘ 𝐴 ) = ( .r ‘ 𝑆 ) ) |
| 28 |
27
|
oveqd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) → ( ( 𝑦 ∗ 1 ) ( .r ‘ 𝐴 ) ( 𝑧 ∗ 1 ) ) = ( ( 𝑦 ∗ 1 ) ( .r ‘ 𝑆 ) ( 𝑧 ∗ 1 ) ) ) |
| 29 |
24 28
|
eqtr3d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) → ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∗ 1 ) = ( ( 𝑦 ∗ 1 ) ( .r ‘ 𝑆 ) ( 𝑧 ∗ 1 ) ) ) |
| 30 |
|
simpr |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑅 ∈ Ring ) |
| 31 |
30
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) → 𝑅 ∈ Ring ) |
| 32 |
30
|
anim1i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) → ( 𝑅 ∈ Ring ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) ) |
| 33 |
|
3anass |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ↔ ( 𝑅 ∈ Ring ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) ) |
| 34 |
32 33
|
sylibr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) → ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) |
| 35 |
1 22
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ 𝐾 ) |
| 36 |
34 35
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ 𝐾 ) |
| 37 |
1 2 3 4 5
|
scmatrhmval |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ 𝐾 ) → ( 𝐹 ‘ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∗ 1 ) ) |
| 38 |
31 36 37
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) → ( 𝐹 ‘ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∗ 1 ) ) |
| 39 |
1 2 3 4 5
|
scmatrhmval |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐾 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝑦 ∗ 1 ) ) |
| 40 |
39
|
ad2ant2lr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝑦 ∗ 1 ) ) |
| 41 |
1 2 3 4 5
|
scmatrhmval |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑧 ∈ 𝐾 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝑧 ∗ 1 ) ) |
| 42 |
41
|
ad2ant2l |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝑧 ∗ 1 ) ) |
| 43 |
40 42
|
oveq12d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) → ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝑦 ∗ 1 ) ( .r ‘ 𝑆 ) ( 𝑧 ∗ 1 ) ) ) |
| 44 |
29 38 43
|
3eqtr4d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) → ( 𝐹 ‘ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑧 ) ) ) |
| 45 |
44
|
ralrimivva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ∀ 𝑦 ∈ 𝐾 ∀ 𝑧 ∈ 𝐾 ( 𝐹 ‘ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑧 ) ) ) |
| 46 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 47 |
1 46
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐾 ) |
| 48 |
1 2 3 4 5
|
scmatrhmval |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ∈ 𝐾 ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = ( ( 1r ‘ 𝑅 ) ∗ 1 ) ) |
| 49 |
30 47 48
|
syl2anc2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = ( ( 1r ‘ 𝑅 ) ∗ 1 ) ) |
| 50 |
2
|
matsca2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑅 = ( Scalar ‘ 𝐴 ) ) |
| 51 |
50
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 52 |
51
|
oveq1d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ( 1r ‘ 𝑅 ) ∗ 1 ) = ( ( 1r ‘ ( Scalar ‘ 𝐴 ) ) ∗ 1 ) ) |
| 53 |
2
|
matlmod |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ LMod ) |
| 54 |
2
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
| 55 |
12 3
|
ringidcl |
⊢ ( 𝐴 ∈ Ring → 1 ∈ ( Base ‘ 𝐴 ) ) |
| 56 |
54 55
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 1 ∈ ( Base ‘ 𝐴 ) ) |
| 57 |
|
eqid |
⊢ ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝐴 ) |
| 58 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝐴 ) ) = ( 1r ‘ ( Scalar ‘ 𝐴 ) ) |
| 59 |
12 57 4 58
|
lmodvs1 |
⊢ ( ( 𝐴 ∈ LMod ∧ 1 ∈ ( Base ‘ 𝐴 ) ) → ( ( 1r ‘ ( Scalar ‘ 𝐴 ) ) ∗ 1 ) = 1 ) |
| 60 |
53 56 59
|
syl2anc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ( 1r ‘ ( Scalar ‘ 𝐴 ) ) ∗ 1 ) = 1 ) |
| 61 |
52 60
|
eqtrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ( 1r ‘ 𝑅 ) ∗ 1 ) = 1 ) |
| 62 |
49 61
|
eqtrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = 1 ) |
| 63 |
7 3
|
subrg1 |
⊢ ( 𝐶 ∈ ( SubRing ‘ 𝐴 ) → 1 = ( 1r ‘ 𝑆 ) ) |
| 64 |
14 63
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 1 = ( 1r ‘ 𝑆 ) ) |
| 65 |
62 64
|
eqtrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑆 ) ) |
| 66 |
21 45 65
|
3jca |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝐹 : 𝐾 ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑦 ∈ 𝐾 ∀ 𝑧 ∈ 𝐾 ( 𝐹 ‘ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑧 ) ) ∧ ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑆 ) ) ) |
| 67 |
8 1
|
mgpbas |
⊢ 𝐾 = ( Base ‘ 𝑀 ) |
| 68 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 69 |
9 68
|
mgpbas |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑇 ) |
| 70 |
8 22
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ 𝑀 ) |
| 71 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
| 72 |
9 71
|
mgpplusg |
⊢ ( .r ‘ 𝑆 ) = ( +g ‘ 𝑇 ) |
| 73 |
8 46
|
ringidval |
⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑀 ) |
| 74 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
| 75 |
9 74
|
ringidval |
⊢ ( 1r ‘ 𝑆 ) = ( 0g ‘ 𝑇 ) |
| 76 |
67 69 70 72 73 75
|
ismhm |
⊢ ( 𝐹 ∈ ( 𝑀 MndHom 𝑇 ) ↔ ( ( 𝑀 ∈ Mnd ∧ 𝑇 ∈ Mnd ) ∧ ( 𝐹 : 𝐾 ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑦 ∈ 𝐾 ∀ 𝑧 ∈ 𝐾 ( 𝐹 ‘ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑧 ) ) ∧ ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑆 ) ) ) ) |
| 77 |
11 17 66 76
|
syl21anbrc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐹 ∈ ( 𝑀 MndHom 𝑇 ) ) |