| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scmatrhmval.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | scmatrhmval.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 3 |  | scmatrhmval.o | ⊢  1   =  ( 1r ‘ 𝐴 ) | 
						
							| 4 |  | scmatrhmval.t | ⊢  ∗   =  (  ·𝑠  ‘ 𝐴 ) | 
						
							| 5 |  | scmatrhmval.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝐾  ↦  ( 𝑥  ∗   1  ) ) | 
						
							| 6 |  | scmatrhmval.c | ⊢ 𝐶  =  ( 𝑁  ScMat  𝑅 ) | 
						
							| 7 |  | scmatghm.s | ⊢ 𝑆  =  ( 𝐴  ↾s  𝐶 ) | 
						
							| 8 |  | scmatmhm.m | ⊢ 𝑀  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 9 |  | scmatmhm.t | ⊢ 𝑇  =  ( mulGrp ‘ 𝑆 ) | 
						
							| 10 | 8 | ringmgp | ⊢ ( 𝑅  ∈  Ring  →  𝑀  ∈  Mnd ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑀  ∈  Mnd ) | 
						
							| 12 |  | eqid | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 ) | 
						
							| 13 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 14 | 2 12 1 13 6 | scmatsrng | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐶  ∈  ( SubRing ‘ 𝐴 ) ) | 
						
							| 15 | 7 | subrgring | ⊢ ( 𝐶  ∈  ( SubRing ‘ 𝐴 )  →  𝑆  ∈  Ring ) | 
						
							| 16 | 9 | ringmgp | ⊢ ( 𝑆  ∈  Ring  →  𝑇  ∈  Mnd ) | 
						
							| 17 | 14 15 16 | 3syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑇  ∈  Mnd ) | 
						
							| 18 | 1 2 3 4 5 6 | scmatf | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐹 : 𝐾 ⟶ 𝐶 ) | 
						
							| 19 | 2 6 7 | scmatstrbas | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( Base ‘ 𝑆 )  =  𝐶 ) | 
						
							| 20 | 19 | feq3d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝐹 : 𝐾 ⟶ ( Base ‘ 𝑆 )  ↔  𝐹 : 𝐾 ⟶ 𝐶 ) ) | 
						
							| 21 | 18 20 | mpbird | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐹 : 𝐾 ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 22 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 23 |  | eqid | ⊢ ( .r ‘ 𝐴 )  =  ( .r ‘ 𝐴 ) | 
						
							| 24 | 2 1 13 3 4 22 23 | scmatscmiddistr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( ( 𝑦  ∗   1  ) ( .r ‘ 𝐴 ) ( 𝑧  ∗   1  ) )  =  ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 )  ∗   1  ) ) | 
						
							| 25 | 7 23 | ressmulr | ⊢ ( 𝐶  ∈  ( SubRing ‘ 𝐴 )  →  ( .r ‘ 𝐴 )  =  ( .r ‘ 𝑆 ) ) | 
						
							| 26 | 14 25 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( .r ‘ 𝐴 )  =  ( .r ‘ 𝑆 ) ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( .r ‘ 𝐴 )  =  ( .r ‘ 𝑆 ) ) | 
						
							| 28 | 27 | oveqd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( ( 𝑦  ∗   1  ) ( .r ‘ 𝐴 ) ( 𝑧  ∗   1  ) )  =  ( ( 𝑦  ∗   1  ) ( .r ‘ 𝑆 ) ( 𝑧  ∗   1  ) ) ) | 
						
							| 29 | 24 28 | eqtr3d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 )  ∗   1  )  =  ( ( 𝑦  ∗   1  ) ( .r ‘ 𝑆 ) ( 𝑧  ∗   1  ) ) ) | 
						
							| 30 |  | simpr | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑅  ∈  Ring ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  𝑅  ∈  Ring ) | 
						
							| 32 | 30 | anim1i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( 𝑅  ∈  Ring  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) ) ) | 
						
							| 33 |  | 3anass | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 )  ↔  ( 𝑅  ∈  Ring  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) ) ) | 
						
							| 34 | 32 33 | sylibr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( 𝑅  ∈  Ring  ∧  𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) ) | 
						
							| 35 | 1 22 | ringcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 )  →  ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 )  ∈  𝐾 ) | 
						
							| 36 | 34 35 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 )  ∈  𝐾 ) | 
						
							| 37 | 1 2 3 4 5 | scmatrhmval | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 )  ∈  𝐾 )  →  ( 𝐹 ‘ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) )  =  ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 )  ∗   1  ) ) | 
						
							| 38 | 31 36 37 | syl2anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( 𝐹 ‘ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) )  =  ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 )  ∗   1  ) ) | 
						
							| 39 | 1 2 3 4 5 | scmatrhmval | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑦  ∈  𝐾 )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝑦  ∗   1  ) ) | 
						
							| 40 | 39 | ad2ant2lr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝑦  ∗   1  ) ) | 
						
							| 41 | 1 2 3 4 5 | scmatrhmval | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑧  ∈  𝐾 )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝑧  ∗   1  ) ) | 
						
							| 42 | 41 | ad2ant2l | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝑧  ∗   1  ) ) | 
						
							| 43 | 40 42 | oveq12d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑧 ) )  =  ( ( 𝑦  ∗   1  ) ( .r ‘ 𝑆 ) ( 𝑧  ∗   1  ) ) ) | 
						
							| 44 | 29 38 43 | 3eqtr4d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑦  ∈  𝐾  ∧  𝑧  ∈  𝐾 ) )  →  ( 𝐹 ‘ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) )  =  ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 45 | 44 | ralrimivva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ∀ 𝑦  ∈  𝐾 ∀ 𝑧  ∈  𝐾 ( 𝐹 ‘ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) )  =  ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 46 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 47 | 1 46 | ringidcl | ⊢ ( 𝑅  ∈  Ring  →  ( 1r ‘ 𝑅 )  ∈  𝐾 ) | 
						
							| 48 | 1 2 3 4 5 | scmatrhmval | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 1r ‘ 𝑅 )  ∈  𝐾 )  →  ( 𝐹 ‘ ( 1r ‘ 𝑅 ) )  =  ( ( 1r ‘ 𝑅 )  ∗   1  ) ) | 
						
							| 49 | 30 47 48 | syl2anc2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝐹 ‘ ( 1r ‘ 𝑅 ) )  =  ( ( 1r ‘ 𝑅 )  ∗   1  ) ) | 
						
							| 50 | 2 | matsca2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑅  =  ( Scalar ‘ 𝐴 ) ) | 
						
							| 51 | 50 | fveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 1r ‘ 𝑅 )  =  ( 1r ‘ ( Scalar ‘ 𝐴 ) ) ) | 
						
							| 52 | 51 | oveq1d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( ( 1r ‘ 𝑅 )  ∗   1  )  =  ( ( 1r ‘ ( Scalar ‘ 𝐴 ) )  ∗   1  ) ) | 
						
							| 53 | 2 | matlmod | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  LMod ) | 
						
							| 54 | 2 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 55 | 12 3 | ringidcl | ⊢ ( 𝐴  ∈  Ring  →   1   ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 56 | 54 55 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →   1   ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 57 |  | eqid | ⊢ ( Scalar ‘ 𝐴 )  =  ( Scalar ‘ 𝐴 ) | 
						
							| 58 |  | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝐴 ) )  =  ( 1r ‘ ( Scalar ‘ 𝐴 ) ) | 
						
							| 59 | 12 57 4 58 | lmodvs1 | ⊢ ( ( 𝐴  ∈  LMod  ∧   1   ∈  ( Base ‘ 𝐴 ) )  →  ( ( 1r ‘ ( Scalar ‘ 𝐴 ) )  ∗   1  )  =   1  ) | 
						
							| 60 | 53 56 59 | syl2anc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( ( 1r ‘ ( Scalar ‘ 𝐴 ) )  ∗   1  )  =   1  ) | 
						
							| 61 | 52 60 | eqtrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( ( 1r ‘ 𝑅 )  ∗   1  )  =   1  ) | 
						
							| 62 | 49 61 | eqtrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝐹 ‘ ( 1r ‘ 𝑅 ) )  =   1  ) | 
						
							| 63 | 7 3 | subrg1 | ⊢ ( 𝐶  ∈  ( SubRing ‘ 𝐴 )  →   1   =  ( 1r ‘ 𝑆 ) ) | 
						
							| 64 | 14 63 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →   1   =  ( 1r ‘ 𝑆 ) ) | 
						
							| 65 | 62 64 | eqtrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝐹 ‘ ( 1r ‘ 𝑅 ) )  =  ( 1r ‘ 𝑆 ) ) | 
						
							| 66 | 21 45 65 | 3jca | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝐹 : 𝐾 ⟶ ( Base ‘ 𝑆 )  ∧  ∀ 𝑦  ∈  𝐾 ∀ 𝑧  ∈  𝐾 ( 𝐹 ‘ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) )  =  ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑧 ) )  ∧  ( 𝐹 ‘ ( 1r ‘ 𝑅 ) )  =  ( 1r ‘ 𝑆 ) ) ) | 
						
							| 67 | 8 1 | mgpbas | ⊢ 𝐾  =  ( Base ‘ 𝑀 ) | 
						
							| 68 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 69 | 9 68 | mgpbas | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑇 ) | 
						
							| 70 | 8 22 | mgpplusg | ⊢ ( .r ‘ 𝑅 )  =  ( +g ‘ 𝑀 ) | 
						
							| 71 |  | eqid | ⊢ ( .r ‘ 𝑆 )  =  ( .r ‘ 𝑆 ) | 
						
							| 72 | 9 71 | mgpplusg | ⊢ ( .r ‘ 𝑆 )  =  ( +g ‘ 𝑇 ) | 
						
							| 73 | 8 46 | ringidval | ⊢ ( 1r ‘ 𝑅 )  =  ( 0g ‘ 𝑀 ) | 
						
							| 74 |  | eqid | ⊢ ( 1r ‘ 𝑆 )  =  ( 1r ‘ 𝑆 ) | 
						
							| 75 | 9 74 | ringidval | ⊢ ( 1r ‘ 𝑆 )  =  ( 0g ‘ 𝑇 ) | 
						
							| 76 | 67 69 70 72 73 75 | ismhm | ⊢ ( 𝐹  ∈  ( 𝑀  MndHom  𝑇 )  ↔  ( ( 𝑀  ∈  Mnd  ∧  𝑇  ∈  Mnd )  ∧  ( 𝐹 : 𝐾 ⟶ ( Base ‘ 𝑆 )  ∧  ∀ 𝑦  ∈  𝐾 ∀ 𝑧  ∈  𝐾 ( 𝐹 ‘ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) )  =  ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑧 ) )  ∧  ( 𝐹 ‘ ( 1r ‘ 𝑅 ) )  =  ( 1r ‘ 𝑆 ) ) ) ) | 
						
							| 77 | 11 17 66 76 | syl21anbrc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐹  ∈  ( 𝑀  MndHom  𝑇 ) ) |