| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scmatid.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | scmatid.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | scmatid.e | ⊢ 𝐸  =  ( Base ‘ 𝑅 ) | 
						
							| 4 |  | scmatid.0 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 5 |  | scmatid.s | ⊢ 𝑆  =  ( 𝑁  ScMat  𝑅 ) | 
						
							| 6 | 1 2 3 4 5 | scmatsgrp | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑆  ∈  ( SubGrp ‘ 𝐴 ) ) | 
						
							| 7 | 1 2 3 4 5 | scmatid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 1r ‘ 𝐴 )  ∈  𝑆 ) | 
						
							| 8 | 1 2 3 4 5 | scmatmulcl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  ∈  𝑆 ) | 
						
							| 9 | 8 | ralrimivva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  ∈  𝑆 ) | 
						
							| 10 | 1 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 11 |  | eqid | ⊢ ( 1r ‘ 𝐴 )  =  ( 1r ‘ 𝐴 ) | 
						
							| 12 |  | eqid | ⊢ ( .r ‘ 𝐴 )  =  ( .r ‘ 𝐴 ) | 
						
							| 13 | 2 11 12 | issubrg2 | ⊢ ( 𝐴  ∈  Ring  →  ( 𝑆  ∈  ( SubRing ‘ 𝐴 )  ↔  ( 𝑆  ∈  ( SubGrp ‘ 𝐴 )  ∧  ( 1r ‘ 𝐴 )  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  ∈  𝑆 ) ) ) | 
						
							| 14 | 10 13 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑆  ∈  ( SubRing ‘ 𝐴 )  ↔  ( 𝑆  ∈  ( SubGrp ‘ 𝐴 )  ∧  ( 1r ‘ 𝐴 )  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  ∈  𝑆 ) ) ) | 
						
							| 15 | 6 7 9 14 | mpbir3and | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑆  ∈  ( SubRing ‘ 𝐴 ) ) |