Metamath Proof Explorer


Theorem scmatsgrp

Description: The set of scalar matrices is a subgroup of the matrix group/algebra. (Contributed by AV, 20-Aug-2019) (Revised by AV, 19-Dec-2019)

Ref Expression
Hypotheses scmatid.a 𝐴 = ( 𝑁 Mat 𝑅 )
scmatid.b 𝐵 = ( Base ‘ 𝐴 )
scmatid.e 𝐸 = ( Base ‘ 𝑅 )
scmatid.0 0 = ( 0g𝑅 )
scmatid.s 𝑆 = ( 𝑁 ScMat 𝑅 )
Assertion scmatsgrp ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 ∈ ( SubGrp ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 scmatid.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 scmatid.b 𝐵 = ( Base ‘ 𝐴 )
3 scmatid.e 𝐸 = ( Base ‘ 𝑅 )
4 scmatid.0 0 = ( 0g𝑅 )
5 scmatid.s 𝑆 = ( 𝑁 ScMat 𝑅 )
6 1 2 5 scmatmat ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑧𝑆𝑧𝐵 ) )
7 6 ssrdv ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆𝐵 )
8 1 2 3 4 5 scmatid ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r𝐴 ) ∈ 𝑆 )
9 8 ne0d ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 ≠ ∅ )
10 1 2 3 4 5 scmatsubcl ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝑆𝑦𝑆 ) ) → ( 𝑥 ( -g𝐴 ) 𝑦 ) ∈ 𝑆 )
11 10 ralrimivva ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ∀ 𝑥𝑆𝑦𝑆 ( 𝑥 ( -g𝐴 ) 𝑦 ) ∈ 𝑆 )
12 1 matring ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring )
13 ringgrp ( 𝐴 ∈ Ring → 𝐴 ∈ Grp )
14 eqid ( -g𝐴 ) = ( -g𝐴 )
15 2 14 issubg4 ( 𝐴 ∈ Grp → ( 𝑆 ∈ ( SubGrp ‘ 𝐴 ) ↔ ( 𝑆𝐵𝑆 ≠ ∅ ∧ ∀ 𝑥𝑆𝑦𝑆 ( 𝑥 ( -g𝐴 ) 𝑦 ) ∈ 𝑆 ) ) )
16 12 13 15 3syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑆 ∈ ( SubGrp ‘ 𝐴 ) ↔ ( 𝑆𝐵𝑆 ≠ ∅ ∧ ∀ 𝑥𝑆𝑦𝑆 ( 𝑥 ( -g𝐴 ) 𝑦 ) ∈ 𝑆 ) ) )
17 7 9 11 16 mpbir3and ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 ∈ ( SubGrp ‘ 𝐴 ) )