| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scmatid.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | scmatid.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | scmatid.e | ⊢ 𝐸  =  ( Base ‘ 𝑅 ) | 
						
							| 4 |  | scmatid.0 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 5 |  | scmatid.s | ⊢ 𝑆  =  ( 𝑁  ScMat  𝑅 ) | 
						
							| 6 | 1 2 5 | scmatmat | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑧  ∈  𝑆  →  𝑧  ∈  𝐵 ) ) | 
						
							| 7 | 6 | ssrdv | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑆  ⊆  𝐵 ) | 
						
							| 8 | 1 2 3 4 5 | scmatid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 1r ‘ 𝐴 )  ∈  𝑆 ) | 
						
							| 9 | 8 | ne0d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑆  ≠  ∅ ) | 
						
							| 10 | 1 2 3 4 5 | scmatsubcl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥 ( -g ‘ 𝐴 ) 𝑦 )  ∈  𝑆 ) | 
						
							| 11 | 10 | ralrimivva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥 ( -g ‘ 𝐴 ) 𝑦 )  ∈  𝑆 ) | 
						
							| 12 | 1 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 13 |  | ringgrp | ⊢ ( 𝐴  ∈  Ring  →  𝐴  ∈  Grp ) | 
						
							| 14 |  | eqid | ⊢ ( -g ‘ 𝐴 )  =  ( -g ‘ 𝐴 ) | 
						
							| 15 | 2 14 | issubg4 | ⊢ ( 𝐴  ∈  Grp  →  ( 𝑆  ∈  ( SubGrp ‘ 𝐴 )  ↔  ( 𝑆  ⊆  𝐵  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥 ( -g ‘ 𝐴 ) 𝑦 )  ∈  𝑆 ) ) ) | 
						
							| 16 | 12 13 15 | 3syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑆  ∈  ( SubGrp ‘ 𝐴 )  ↔  ( 𝑆  ⊆  𝐵  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥 ( -g ‘ 𝐴 ) 𝑦 )  ∈  𝑆 ) ) ) | 
						
							| 17 | 7 9 11 16 | mpbir3and | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑆  ∈  ( SubGrp ‘ 𝐴 ) ) |