Metamath Proof Explorer


Theorem scmatsgrp

Description: The set of scalar matrices is a subgroup of the matrix group/algebra. (Contributed by AV, 20-Aug-2019) (Revised by AV, 19-Dec-2019)

Ref Expression
Hypotheses scmatid.a
|- A = ( N Mat R )
scmatid.b
|- B = ( Base ` A )
scmatid.e
|- E = ( Base ` R )
scmatid.0
|- .0. = ( 0g ` R )
scmatid.s
|- S = ( N ScMat R )
Assertion scmatsgrp
|- ( ( N e. Fin /\ R e. Ring ) -> S e. ( SubGrp ` A ) )

Proof

Step Hyp Ref Expression
1 scmatid.a
 |-  A = ( N Mat R )
2 scmatid.b
 |-  B = ( Base ` A )
3 scmatid.e
 |-  E = ( Base ` R )
4 scmatid.0
 |-  .0. = ( 0g ` R )
5 scmatid.s
 |-  S = ( N ScMat R )
6 1 2 5 scmatmat
 |-  ( ( N e. Fin /\ R e. Ring ) -> ( z e. S -> z e. B ) )
7 6 ssrdv
 |-  ( ( N e. Fin /\ R e. Ring ) -> S C_ B )
8 1 2 3 4 5 scmatid
 |-  ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` A ) e. S )
9 8 ne0d
 |-  ( ( N e. Fin /\ R e. Ring ) -> S =/= (/) )
10 1 2 3 4 5 scmatsubcl
 |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. S /\ y e. S ) ) -> ( x ( -g ` A ) y ) e. S )
11 10 ralrimivva
 |-  ( ( N e. Fin /\ R e. Ring ) -> A. x e. S A. y e. S ( x ( -g ` A ) y ) e. S )
12 1 matring
 |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring )
13 ringgrp
 |-  ( A e. Ring -> A e. Grp )
14 eqid
 |-  ( -g ` A ) = ( -g ` A )
15 2 14 issubg4
 |-  ( A e. Grp -> ( S e. ( SubGrp ` A ) <-> ( S C_ B /\ S =/= (/) /\ A. x e. S A. y e. S ( x ( -g ` A ) y ) e. S ) ) )
16 12 13 15 3syl
 |-  ( ( N e. Fin /\ R e. Ring ) -> ( S e. ( SubGrp ` A ) <-> ( S C_ B /\ S =/= (/) /\ A. x e. S A. y e. S ( x ( -g ` A ) y ) e. S ) ) )
17 7 9 11 16 mpbir3and
 |-  ( ( N e. Fin /\ R e. Ring ) -> S e. ( SubGrp ` A ) )