Metamath Proof Explorer


Theorem scmatsgrp

Description: The set of scalar matrices is a subgroup of the matrix group/algebra. (Contributed by AV, 20-Aug-2019) (Revised by AV, 19-Dec-2019)

Ref Expression
Hypotheses scmatid.a A=NMatR
scmatid.b B=BaseA
scmatid.e E=BaseR
scmatid.0 0˙=0R
scmatid.s S=NScMatR
Assertion scmatsgrp NFinRRingSSubGrpA

Proof

Step Hyp Ref Expression
1 scmatid.a A=NMatR
2 scmatid.b B=BaseA
3 scmatid.e E=BaseR
4 scmatid.0 0˙=0R
5 scmatid.s S=NScMatR
6 1 2 5 scmatmat NFinRRingzSzB
7 6 ssrdv NFinRRingSB
8 1 2 3 4 5 scmatid NFinRRing1AS
9 8 ne0d NFinRRingS
10 1 2 3 4 5 scmatsubcl NFinRRingxSySx-AyS
11 10 ralrimivva NFinRRingxSySx-AyS
12 1 matring NFinRRingARing
13 ringgrp ARingAGrp
14 eqid -A=-A
15 2 14 issubg4 AGrpSSubGrpASBSxSySx-AyS
16 12 13 15 3syl NFinRRingSSubGrpASBSxSySx-AyS
17 7 9 11 16 mpbir3and NFinRRingSSubGrpA