Metamath Proof Explorer


Theorem scmatsubcl

Description: The difference of two scalar matrices is a scalar matrix. (Contributed by AV, 20-Aug-2019) (Revised by AV, 19-Dec-2019)

Ref Expression
Hypotheses scmatid.a A=NMatR
scmatid.b B=BaseA
scmatid.e E=BaseR
scmatid.0 0˙=0R
scmatid.s S=NScMatR
Assertion scmatsubcl NFinRRingXSYSX-AYS

Proof

Step Hyp Ref Expression
1 scmatid.a A=NMatR
2 scmatid.b B=BaseA
3 scmatid.e E=BaseR
4 scmatid.0 0˙=0R
5 scmatid.s S=NScMatR
6 eqid 1A=1A
7 eqid A=A
8 3 1 2 6 7 5 scmatscmid NFinRRingXScEX=cA1A
9 8 3expa NFinRRingXScEX=cA1A
10 9 adantrr NFinRRingXSYScEX=cA1A
11 3 1 2 6 7 5 scmatscmid NFinRRingYSdEY=dA1A
12 11 3expia NFinRRingYSdEY=dA1A
13 oveq12 X=cA1AY=dA1AX-AY=cA1A-AdA1A
14 13 adantl NFinRRingdEcEX=cA1AY=dA1AX-AY=cA1A-AdA1A
15 eqid ScalarA=ScalarA
16 eqid BaseScalarA=BaseScalarA
17 eqid -A=-A
18 eqid -ScalarA=-ScalarA
19 1 matlmod NFinRRingALMod
20 19 ad2antrr NFinRRingdEcEALMod
21 1 matsca2 NFinRRingR=ScalarA
22 21 fveq2d NFinRRingBaseR=BaseScalarA
23 3 22 eqtrid NFinRRingE=BaseScalarA
24 23 eleq2d NFinRRingcEcBaseScalarA
25 24 biimpd NFinRRingcEcBaseScalarA
26 25 adantr NFinRRingdEcEcBaseScalarA
27 26 imp NFinRRingdEcEcBaseScalarA
28 23 eleq2d NFinRRingdEdBaseScalarA
29 28 biimpa NFinRRingdEdBaseScalarA
30 29 adantr NFinRRingdEcEdBaseScalarA
31 1 matring NFinRRingARing
32 2 6 ringidcl ARing1AB
33 31 32 syl NFinRRing1AB
34 33 ad2antrr NFinRRingdEcE1AB
35 2 7 15 16 17 18 20 27 30 34 lmodsubdir NFinRRingdEcEc-ScalarAdA1A=cA1A-AdA1A
36 35 eqcomd NFinRRingdEcEcA1A-AdA1A=c-ScalarAdA1A
37 simpll NFinRRingdEcENFinRRing
38 21 eqcomd NFinRRingScalarA=R
39 38 ad2antrr NFinRRingdEcEScalarA=R
40 39 fveq2d NFinRRingdEcE-ScalarA=-R
41 40 oveqd NFinRRingdEcEc-ScalarAd=c-Rd
42 ringgrp RRingRGrp
43 42 adantl NFinRRingRGrp
44 43 ad2antrr NFinRRingdEcERGrp
45 simpr NFinRRingdEcEcE
46 simplr NFinRRingdEcEdE
47 eqid -R=-R
48 3 47 grpsubcl RGrpcEdEc-RdE
49 44 45 46 48 syl3anc NFinRRingdEcEc-RdE
50 41 49 eqeltrd NFinRRingdEcEc-ScalarAdE
51 3 1 2 7 matvscl NFinRRingc-ScalarAdE1ABc-ScalarAdA1AB
52 37 50 34 51 syl12anc NFinRRingdEcEc-ScalarAdA1AB
53 oveq1 e=c-ScalarAdeA1A=c-ScalarAdA1A
54 53 eqeq2d e=c-ScalarAdc-ScalarAdA1A=eA1Ac-ScalarAdA1A=c-ScalarAdA1A
55 54 adantl NFinRRingdEcEe=c-ScalarAdc-ScalarAdA1A=eA1Ac-ScalarAdA1A=c-ScalarAdA1A
56 eqidd NFinRRingdEcEc-ScalarAdA1A=c-ScalarAdA1A
57 50 55 56 rspcedvd NFinRRingdEcEeEc-ScalarAdA1A=eA1A
58 3 1 2 6 7 5 scmatel NFinRRingc-ScalarAdA1ASc-ScalarAdA1ABeEc-ScalarAdA1A=eA1A
59 58 ad2antrr NFinRRingdEcEc-ScalarAdA1ASc-ScalarAdA1ABeEc-ScalarAdA1A=eA1A
60 52 57 59 mpbir2and NFinRRingdEcEc-ScalarAdA1AS
61 36 60 eqeltrd NFinRRingdEcEcA1A-AdA1AS
62 61 adantr NFinRRingdEcEX=cA1AY=dA1AcA1A-AdA1AS
63 14 62 eqeltrd NFinRRingdEcEX=cA1AY=dA1AX-AYS
64 63 exp32 NFinRRingdEcEX=cA1AY=dA1AX-AYS
65 64 rexlimdva NFinRRingdEcEX=cA1AY=dA1AX-AYS
66 65 com23 NFinRRingdEY=dA1AcEX=cA1AX-AYS
67 66 rexlimdva NFinRRingdEY=dA1AcEX=cA1AX-AYS
68 12 67 syldc YSNFinRRingcEX=cA1AX-AYS
69 68 adantl XSYSNFinRRingcEX=cA1AX-AYS
70 69 impcom NFinRRingXSYScEX=cA1AX-AYS
71 10 70 mpd NFinRRingXSYSX-AYS