Description: The product of two scalar matrices is a scalar matrix. (Contributed by AV, 21-Aug-2019) (Revised by AV, 19-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | scmatid.a | |
|
scmatid.b | |
||
scmatid.e | |
||
scmatid.0 | |
||
scmatid.s | |
||
Assertion | scmatmulcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scmatid.a | |
|
2 | scmatid.b | |
|
3 | scmatid.e | |
|
4 | scmatid.0 | |
|
5 | scmatid.s | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | 3 1 2 6 7 5 | scmatel | |
9 | 3 1 2 6 7 5 | scmatel | |
10 | oveq12 | |
|
11 | 10 | adantll | |
12 | simp-4l | |
|
13 | simplr | |
|
14 | 13 | anim1ci | |
15 | eqid | |
|
16 | eqid | |
|
17 | 1 3 4 6 7 15 16 | scmatscmiddistr | |
18 | 12 14 17 | syl2anc | |
19 | simpl | |
|
20 | simplr | |
|
21 | simprr | |
|
22 | simpl | |
|
23 | 22 | adantl | |
24 | 3 15 | ringcl | |
25 | 20 21 23 24 | syl3anc | |
26 | 1 | matring | |
27 | 2 6 | ringidcl | |
28 | 26 27 | syl | |
29 | 28 | adantr | |
30 | 3 1 2 7 | matvscl | |
31 | 19 25 29 30 | syl12anc | |
32 | oveq1 | |
|
33 | 32 | eqeq2d | |
34 | 33 | adantl | |
35 | eqidd | |
|
36 | 25 34 35 | rspcedvd | |
37 | 3 1 2 6 7 5 | scmatel | |
38 | 37 | adantr | |
39 | 31 36 38 | mpbir2and | |
40 | 39 | exp32 | |
41 | 40 | adantr | |
42 | 41 | imp | |
43 | 42 | adantr | |
44 | 43 | imp | |
45 | 18 44 | eqeltrd | |
46 | 45 | adantr | |
47 | 46 | adantr | |
48 | 11 47 | eqeltrd | |
49 | 48 | exp31 | |
50 | 49 | rexlimdva | |
51 | 50 | expimpd | |
52 | 51 | com23 | |
53 | 52 | rexlimdva | |
54 | 53 | expimpd | |
55 | 9 54 | sylbid | |
56 | 55 | com23 | |
57 | 8 56 | sylbid | |
58 | 57 | imp32 | |