Metamath Proof Explorer


Theorem scmatmulcl

Description: The product of two scalar matrices is a scalar matrix. (Contributed by AV, 21-Aug-2019) (Revised by AV, 19-Dec-2019)

Ref Expression
Hypotheses scmatid.a A=NMatR
scmatid.b B=BaseA
scmatid.e E=BaseR
scmatid.0 0˙=0R
scmatid.s S=NScMatR
Assertion scmatmulcl NFinRRingXSYSXAYS

Proof

Step Hyp Ref Expression
1 scmatid.a A=NMatR
2 scmatid.b B=BaseA
3 scmatid.e E=BaseR
4 scmatid.0 0˙=0R
5 scmatid.s S=NScMatR
6 eqid 1A=1A
7 eqid A=A
8 3 1 2 6 7 5 scmatel NFinRRingXSXBcEX=cA1A
9 3 1 2 6 7 5 scmatel NFinRRingYSYBdEY=dA1A
10 oveq12 X=cA1AY=dA1AXAY=cA1AAdA1A
11 10 adantll NFinRRingYBdEXBcEX=cA1AY=dA1AXAY=cA1AAdA1A
12 simp-4l NFinRRingYBdEXBcENFinRRing
13 simplr NFinRRingYBdEXBdE
14 13 anim1ci NFinRRingYBdEXBcEcEdE
15 eqid R=R
16 eqid A=A
17 1 3 4 6 7 15 16 scmatscmiddistr NFinRRingcEdEcA1AAdA1A=cRdA1A
18 12 14 17 syl2anc NFinRRingYBdEXBcEcA1AAdA1A=cRdA1A
19 simpl NFinRRingdEcENFinRRing
20 simplr NFinRRingdEcERRing
21 simprr NFinRRingdEcEcE
22 simpl dEcEdE
23 22 adantl NFinRRingdEcEdE
24 3 15 ringcl RRingcEdEcRdE
25 20 21 23 24 syl3anc NFinRRingdEcEcRdE
26 1 matring NFinRRingARing
27 2 6 ringidcl ARing1AB
28 26 27 syl NFinRRing1AB
29 28 adantr NFinRRingdEcE1AB
30 3 1 2 7 matvscl NFinRRingcRdE1ABcRdA1AB
31 19 25 29 30 syl12anc NFinRRingdEcEcRdA1AB
32 oveq1 e=cRdeA1A=cRdA1A
33 32 eqeq2d e=cRdcRdA1A=eA1AcRdA1A=cRdA1A
34 33 adantl NFinRRingdEcEe=cRdcRdA1A=eA1AcRdA1A=cRdA1A
35 eqidd NFinRRingdEcEcRdA1A=cRdA1A
36 25 34 35 rspcedvd NFinRRingdEcEeEcRdA1A=eA1A
37 3 1 2 6 7 5 scmatel NFinRRingcRdA1AScRdA1ABeEcRdA1A=eA1A
38 37 adantr NFinRRingdEcEcRdA1AScRdA1ABeEcRdA1A=eA1A
39 31 36 38 mpbir2and NFinRRingdEcEcRdA1AS
40 39 exp32 NFinRRingdEcEcRdA1AS
41 40 adantr NFinRRingYBdEcEcRdA1AS
42 41 imp NFinRRingYBdEcEcRdA1AS
43 42 adantr NFinRRingYBdEXBcEcRdA1AS
44 43 imp NFinRRingYBdEXBcEcRdA1AS
45 18 44 eqeltrd NFinRRingYBdEXBcEcA1AAdA1AS
46 45 adantr NFinRRingYBdEXBcEX=cA1AcA1AAdA1AS
47 46 adantr NFinRRingYBdEXBcEX=cA1AY=dA1AcA1AAdA1AS
48 11 47 eqeltrd NFinRRingYBdEXBcEX=cA1AY=dA1AXAYS
49 48 exp31 NFinRRingYBdEXBcEX=cA1AY=dA1AXAYS
50 49 rexlimdva NFinRRingYBdEXBcEX=cA1AY=dA1AXAYS
51 50 expimpd NFinRRingYBdEXBcEX=cA1AY=dA1AXAYS
52 51 com23 NFinRRingYBdEY=dA1AXBcEX=cA1AXAYS
53 52 rexlimdva NFinRRingYBdEY=dA1AXBcEX=cA1AXAYS
54 53 expimpd NFinRRingYBdEY=dA1AXBcEX=cA1AXAYS
55 9 54 sylbid NFinRRingYSXBcEX=cA1AXAYS
56 55 com23 NFinRRingXBcEX=cA1AYSXAYS
57 8 56 sylbid NFinRRingXSYSXAYS
58 57 imp32 NFinRRingXSYSXAYS