Metamath Proof Explorer


Theorem scmatmhm

Description: There is a monoid homomorphism from the multiplicative group of a ring to the multiplicative group of the ring of scalar matrices over this ring. (Contributed by AV, 29-Dec-2019)

Ref Expression
Hypotheses scmatrhmval.k K = Base R
scmatrhmval.a A = N Mat R
scmatrhmval.o 1 ˙ = 1 A
scmatrhmval.t ˙ = A
scmatrhmval.f F = x K x ˙ 1 ˙
scmatrhmval.c C = N ScMat R
scmatghm.s S = A 𝑠 C
scmatmhm.m M = mulGrp R
scmatmhm.t T = mulGrp S
Assertion scmatmhm N Fin R Ring F M MndHom T

Proof

Step Hyp Ref Expression
1 scmatrhmval.k K = Base R
2 scmatrhmval.a A = N Mat R
3 scmatrhmval.o 1 ˙ = 1 A
4 scmatrhmval.t ˙ = A
5 scmatrhmval.f F = x K x ˙ 1 ˙
6 scmatrhmval.c C = N ScMat R
7 scmatghm.s S = A 𝑠 C
8 scmatmhm.m M = mulGrp R
9 scmatmhm.t T = mulGrp S
10 8 ringmgp R Ring M Mnd
11 10 adantl N Fin R Ring M Mnd
12 eqid Base A = Base A
13 eqid 0 R = 0 R
14 2 12 1 13 6 scmatsrng N Fin R Ring C SubRing A
15 7 subrgring C SubRing A S Ring
16 9 ringmgp S Ring T Mnd
17 14 15 16 3syl N Fin R Ring T Mnd
18 1 2 3 4 5 6 scmatf N Fin R Ring F : K C
19 2 6 7 scmatstrbas N Fin R Ring Base S = C
20 19 feq3d N Fin R Ring F : K Base S F : K C
21 18 20 mpbird N Fin R Ring F : K Base S
22 eqid R = R
23 eqid A = A
24 2 1 13 3 4 22 23 scmatscmiddistr N Fin R Ring y K z K y ˙ 1 ˙ A z ˙ 1 ˙ = y R z ˙ 1 ˙
25 7 23 ressmulr C SubRing A A = S
26 14 25 syl N Fin R Ring A = S
27 26 adantr N Fin R Ring y K z K A = S
28 27 oveqd N Fin R Ring y K z K y ˙ 1 ˙ A z ˙ 1 ˙ = y ˙ 1 ˙ S z ˙ 1 ˙
29 24 28 eqtr3d N Fin R Ring y K z K y R z ˙ 1 ˙ = y ˙ 1 ˙ S z ˙ 1 ˙
30 simpr N Fin R Ring R Ring
31 30 adantr N Fin R Ring y K z K R Ring
32 30 anim1i N Fin R Ring y K z K R Ring y K z K
33 3anass R Ring y K z K R Ring y K z K
34 32 33 sylibr N Fin R Ring y K z K R Ring y K z K
35 1 22 ringcl R Ring y K z K y R z K
36 34 35 syl N Fin R Ring y K z K y R z K
37 1 2 3 4 5 scmatrhmval R Ring y R z K F y R z = y R z ˙ 1 ˙
38 31 36 37 syl2anc N Fin R Ring y K z K F y R z = y R z ˙ 1 ˙
39 1 2 3 4 5 scmatrhmval R Ring y K F y = y ˙ 1 ˙
40 39 ad2ant2lr N Fin R Ring y K z K F y = y ˙ 1 ˙
41 1 2 3 4 5 scmatrhmval R Ring z K F z = z ˙ 1 ˙
42 41 ad2ant2l N Fin R Ring y K z K F z = z ˙ 1 ˙
43 40 42 oveq12d N Fin R Ring y K z K F y S F z = y ˙ 1 ˙ S z ˙ 1 ˙
44 29 38 43 3eqtr4d N Fin R Ring y K z K F y R z = F y S F z
45 44 ralrimivva N Fin R Ring y K z K F y R z = F y S F z
46 eqid 1 R = 1 R
47 1 46 ringidcl R Ring 1 R K
48 1 2 3 4 5 scmatrhmval R Ring 1 R K F 1 R = 1 R ˙ 1 ˙
49 30 47 48 syl2anc2 N Fin R Ring F 1 R = 1 R ˙ 1 ˙
50 2 matsca2 N Fin R Ring R = Scalar A
51 50 fveq2d N Fin R Ring 1 R = 1 Scalar A
52 51 oveq1d N Fin R Ring 1 R ˙ 1 ˙ = 1 Scalar A ˙ 1 ˙
53 2 matlmod N Fin R Ring A LMod
54 2 matring N Fin R Ring A Ring
55 12 3 ringidcl A Ring 1 ˙ Base A
56 54 55 syl N Fin R Ring 1 ˙ Base A
57 eqid Scalar A = Scalar A
58 eqid 1 Scalar A = 1 Scalar A
59 12 57 4 58 lmodvs1 A LMod 1 ˙ Base A 1 Scalar A ˙ 1 ˙ = 1 ˙
60 53 56 59 syl2anc N Fin R Ring 1 Scalar A ˙ 1 ˙ = 1 ˙
61 52 60 eqtrd N Fin R Ring 1 R ˙ 1 ˙ = 1 ˙
62 49 61 eqtrd N Fin R Ring F 1 R = 1 ˙
63 7 3 subrg1 C SubRing A 1 ˙ = 1 S
64 14 63 syl N Fin R Ring 1 ˙ = 1 S
65 62 64 eqtrd N Fin R Ring F 1 R = 1 S
66 21 45 65 3jca N Fin R Ring F : K Base S y K z K F y R z = F y S F z F 1 R = 1 S
67 8 1 mgpbas K = Base M
68 eqid Base S = Base S
69 9 68 mgpbas Base S = Base T
70 8 22 mgpplusg R = + M
71 eqid S = S
72 9 71 mgpplusg S = + T
73 8 46 ringidval 1 R = 0 M
74 eqid 1 S = 1 S
75 9 74 ringidval 1 S = 0 T
76 67 69 70 72 73 75 ismhm F M MndHom T M Mnd T Mnd F : K Base S y K z K F y R z = F y S F z F 1 R = 1 S
77 11 17 66 76 syl21anbrc N Fin R Ring F M MndHom T