| Step |
Hyp |
Ref |
Expression |
| 1 |
|
scmatrhmval.k |
|
| 2 |
|
scmatrhmval.a |
|
| 3 |
|
scmatrhmval.o |
|
| 4 |
|
scmatrhmval.t |
|
| 5 |
|
scmatrhmval.f |
|
| 6 |
|
scmatrhmval.c |
|
| 7 |
|
scmatghm.s |
|
| 8 |
|
scmatmhm.m |
|
| 9 |
|
scmatmhm.t |
|
| 10 |
8
|
ringmgp |
|
| 11 |
10
|
adantl |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
2 12 1 13 6
|
scmatsrng |
|
| 15 |
7
|
subrgring |
|
| 16 |
9
|
ringmgp |
|
| 17 |
14 15 16
|
3syl |
|
| 18 |
1 2 3 4 5 6
|
scmatf |
|
| 19 |
2 6 7
|
scmatstrbas |
|
| 20 |
19
|
feq3d |
|
| 21 |
18 20
|
mpbird |
|
| 22 |
|
eqid |
|
| 23 |
|
eqid |
|
| 24 |
2 1 13 3 4 22 23
|
scmatscmiddistr |
|
| 25 |
7 23
|
ressmulr |
|
| 26 |
14 25
|
syl |
|
| 27 |
26
|
adantr |
|
| 28 |
27
|
oveqd |
|
| 29 |
24 28
|
eqtr3d |
|
| 30 |
|
simpr |
|
| 31 |
30
|
adantr |
|
| 32 |
30
|
anim1i |
|
| 33 |
|
3anass |
|
| 34 |
32 33
|
sylibr |
|
| 35 |
1 22
|
ringcl |
|
| 36 |
34 35
|
syl |
|
| 37 |
1 2 3 4 5
|
scmatrhmval |
|
| 38 |
31 36 37
|
syl2anc |
|
| 39 |
1 2 3 4 5
|
scmatrhmval |
|
| 40 |
39
|
ad2ant2lr |
|
| 41 |
1 2 3 4 5
|
scmatrhmval |
|
| 42 |
41
|
ad2ant2l |
|
| 43 |
40 42
|
oveq12d |
|
| 44 |
29 38 43
|
3eqtr4d |
|
| 45 |
44
|
ralrimivva |
|
| 46 |
|
eqid |
|
| 47 |
1 46
|
ringidcl |
|
| 48 |
1 2 3 4 5
|
scmatrhmval |
|
| 49 |
30 47 48
|
syl2anc2 |
|
| 50 |
2
|
matsca2 |
|
| 51 |
50
|
fveq2d |
|
| 52 |
51
|
oveq1d |
|
| 53 |
2
|
matlmod |
|
| 54 |
2
|
matring |
|
| 55 |
12 3
|
ringidcl |
|
| 56 |
54 55
|
syl |
|
| 57 |
|
eqid |
|
| 58 |
|
eqid |
|
| 59 |
12 57 4 58
|
lmodvs1 |
|
| 60 |
53 56 59
|
syl2anc |
|
| 61 |
52 60
|
eqtrd |
|
| 62 |
49 61
|
eqtrd |
|
| 63 |
7 3
|
subrg1 |
|
| 64 |
14 63
|
syl |
|
| 65 |
62 64
|
eqtrd |
|
| 66 |
21 45 65
|
3jca |
|
| 67 |
8 1
|
mgpbas |
|
| 68 |
|
eqid |
|
| 69 |
9 68
|
mgpbas |
|
| 70 |
8 22
|
mgpplusg |
|
| 71 |
|
eqid |
|
| 72 |
9 71
|
mgpplusg |
|
| 73 |
8 46
|
ringidval |
|
| 74 |
|
eqid |
|
| 75 |
9 74
|
ringidval |
|
| 76 |
67 69 70 72 73 75
|
ismhm |
|
| 77 |
11 17 66 76
|
syl21anbrc |
|