Metamath Proof Explorer


Theorem scmatstrbas

Description: The set of scalar matrices is the base set of the ring of corresponding scalar matrices. (Contributed by AV, 26-Dec-2019)

Ref Expression
Hypotheses scmatstrbas.a A=NMatR
scmatstrbas.c C=NScMatR
scmatstrbas.s S=A𝑠C
Assertion scmatstrbas NFinRRingBaseS=C

Proof

Step Hyp Ref Expression
1 scmatstrbas.a A=NMatR
2 scmatstrbas.c C=NScMatR
3 scmatstrbas.s S=A𝑠C
4 eqid BaseA=BaseA
5 eqid BaseR=BaseR
6 eqid 0R=0R
7 1 4 5 6 2 scmatsrng NFinRRingCSubRingA
8 3 subrgbas CSubRingAC=BaseS
9 8 eqcomd CSubRingABaseS=C
10 7 9 syl NFinRRingBaseS=C