| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scmatstrbas.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | scmatstrbas.c |  |-  C = ( N ScMat R ) | 
						
							| 3 |  | scmatstrbas.s |  |-  S = ( A |`s C ) | 
						
							| 4 |  | eqid |  |-  ( Base ` A ) = ( Base ` A ) | 
						
							| 5 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 6 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 7 | 1 4 5 6 2 | scmatsrng |  |-  ( ( N e. Fin /\ R e. Ring ) -> C e. ( SubRing ` A ) ) | 
						
							| 8 | 3 | subrgbas |  |-  ( C e. ( SubRing ` A ) -> C = ( Base ` S ) ) | 
						
							| 9 | 8 | eqcomd |  |-  ( C e. ( SubRing ` A ) -> ( Base ` S ) = C ) | 
						
							| 10 | 7 9 | syl |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( Base ` S ) = C ) |