Description: The set of scalar matrices is the base set of the ring of corresponding scalar matrices. (Contributed by AV, 26-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | scmatstrbas.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| scmatstrbas.c | ⊢ 𝐶 = ( 𝑁 ScMat 𝑅 ) | ||
| scmatstrbas.s | ⊢ 𝑆 = ( 𝐴 ↾s 𝐶 ) | ||
| Assertion | scmatstrbas | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Base ‘ 𝑆 ) = 𝐶 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | scmatstrbas.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 2 | scmatstrbas.c | ⊢ 𝐶 = ( 𝑁 ScMat 𝑅 ) | |
| 3 | scmatstrbas.s | ⊢ 𝑆 = ( 𝐴 ↾s 𝐶 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 6 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 7 | 1 4 5 6 2 | scmatsrng | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶 ∈ ( SubRing ‘ 𝐴 ) ) | 
| 8 | 3 | subrgbas | ⊢ ( 𝐶 ∈ ( SubRing ‘ 𝐴 ) → 𝐶 = ( Base ‘ 𝑆 ) ) | 
| 9 | 8 | eqcomd | ⊢ ( 𝐶 ∈ ( SubRing ‘ 𝐴 ) → ( Base ‘ 𝑆 ) = 𝐶 ) | 
| 10 | 7 9 | syl | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Base ‘ 𝑆 ) = 𝐶 ) |