Metamath Proof Explorer


Theorem scmatstrbas

Description: The set of scalar matrices is the base set of the ring of corresponding scalar matrices. (Contributed by AV, 26-Dec-2019)

Ref Expression
Hypotheses scmatstrbas.a 𝐴 = ( 𝑁 Mat 𝑅 )
scmatstrbas.c 𝐶 = ( 𝑁 ScMat 𝑅 )
scmatstrbas.s 𝑆 = ( 𝐴s 𝐶 )
Assertion scmatstrbas ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Base ‘ 𝑆 ) = 𝐶 )

Proof

Step Hyp Ref Expression
1 scmatstrbas.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 scmatstrbas.c 𝐶 = ( 𝑁 ScMat 𝑅 )
3 scmatstrbas.s 𝑆 = ( 𝐴s 𝐶 )
4 eqid ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 )
5 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
6 eqid ( 0g𝑅 ) = ( 0g𝑅 )
7 1 4 5 6 2 scmatsrng ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶 ∈ ( SubRing ‘ 𝐴 ) )
8 3 subrgbas ( 𝐶 ∈ ( SubRing ‘ 𝐴 ) → 𝐶 = ( Base ‘ 𝑆 ) )
9 8 eqcomd ( 𝐶 ∈ ( SubRing ‘ 𝐴 ) → ( Base ‘ 𝑆 ) = 𝐶 )
10 7 9 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Base ‘ 𝑆 ) = 𝐶 )