Metamath Proof Explorer


Theorem scmatrhm

Description: There is a ring homomorphism from a ring to the ring of scalar matrices over this ring. (Contributed by AV, 29-Dec-2019)

Ref Expression
Hypotheses scmatrhmval.k K=BaseR
scmatrhmval.a A=NMatR
scmatrhmval.o 1˙=1A
scmatrhmval.t ˙=A
scmatrhmval.f F=xKx˙1˙
scmatrhmval.c C=NScMatR
scmatghm.s S=A𝑠C
Assertion scmatrhm NFinRRingFRRingHomS

Proof

Step Hyp Ref Expression
1 scmatrhmval.k K=BaseR
2 scmatrhmval.a A=NMatR
3 scmatrhmval.o 1˙=1A
4 scmatrhmval.t ˙=A
5 scmatrhmval.f F=xKx˙1˙
6 scmatrhmval.c C=NScMatR
7 scmatghm.s S=A𝑠C
8 simpr NFinRRingRRing
9 eqid BaseA=BaseA
10 eqid 0R=0R
11 2 9 1 10 6 scmatsrng NFinRRingCSubRingA
12 7 subrgring CSubRingASRing
13 11 12 syl NFinRRingSRing
14 1 2 3 4 5 6 7 scmatghm NFinRRingFRGrpHomS
15 eqid mulGrpR=mulGrpR
16 eqid mulGrpS=mulGrpS
17 1 2 3 4 5 6 7 15 16 scmatmhm NFinRRingFmulGrpRMndHommulGrpS
18 14 17 jca NFinRRingFRGrpHomSFmulGrpRMndHommulGrpS
19 15 16 isrhm FRRingHomSRRingSRingFRGrpHomSFmulGrpRMndHommulGrpS
20 8 13 18 19 syl21anbrc NFinRRingFRRingHomS