| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scmatrhmval.k |  |-  K = ( Base ` R ) | 
						
							| 2 |  | scmatrhmval.a |  |-  A = ( N Mat R ) | 
						
							| 3 |  | scmatrhmval.o |  |-  .1. = ( 1r ` A ) | 
						
							| 4 |  | scmatrhmval.t |  |-  .* = ( .s ` A ) | 
						
							| 5 |  | scmatrhmval.f |  |-  F = ( x e. K |-> ( x .* .1. ) ) | 
						
							| 6 |  | scmatrhmval.c |  |-  C = ( N ScMat R ) | 
						
							| 7 |  | scmatghm.s |  |-  S = ( A |`s C ) | 
						
							| 8 |  | simpr |  |-  ( ( N e. Fin /\ R e. Ring ) -> R e. Ring ) | 
						
							| 9 |  | eqid |  |-  ( Base ` A ) = ( Base ` A ) | 
						
							| 10 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 11 | 2 9 1 10 6 | scmatsrng |  |-  ( ( N e. Fin /\ R e. Ring ) -> C e. ( SubRing ` A ) ) | 
						
							| 12 | 7 | subrgring |  |-  ( C e. ( SubRing ` A ) -> S e. Ring ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( N e. Fin /\ R e. Ring ) -> S e. Ring ) | 
						
							| 14 | 1 2 3 4 5 6 7 | scmatghm |  |-  ( ( N e. Fin /\ R e. Ring ) -> F e. ( R GrpHom S ) ) | 
						
							| 15 |  | eqid |  |-  ( mulGrp ` R ) = ( mulGrp ` R ) | 
						
							| 16 |  | eqid |  |-  ( mulGrp ` S ) = ( mulGrp ` S ) | 
						
							| 17 | 1 2 3 4 5 6 7 15 16 | scmatmhm |  |-  ( ( N e. Fin /\ R e. Ring ) -> F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) | 
						
							| 18 | 14 17 | jca |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( F e. ( R GrpHom S ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) | 
						
							| 19 | 15 16 | isrhm |  |-  ( F e. ( R RingHom S ) <-> ( ( R e. Ring /\ S e. Ring ) /\ ( F e. ( R GrpHom S ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) ) | 
						
							| 20 | 8 13 18 19 | syl21anbrc |  |-  ( ( N e. Fin /\ R e. Ring ) -> F e. ( R RingHom S ) ) |