| Step |
Hyp |
Ref |
Expression |
| 1 |
|
scmatrhmval.k |
|- K = ( Base ` R ) |
| 2 |
|
scmatrhmval.a |
|- A = ( N Mat R ) |
| 3 |
|
scmatrhmval.o |
|- .1. = ( 1r ` A ) |
| 4 |
|
scmatrhmval.t |
|- .* = ( .s ` A ) |
| 5 |
|
scmatrhmval.f |
|- F = ( x e. K |-> ( x .* .1. ) ) |
| 6 |
|
scmatrhmval.c |
|- C = ( N ScMat R ) |
| 7 |
|
scmatghm.s |
|- S = ( A |`s C ) |
| 8 |
|
simpr |
|- ( ( N e. Fin /\ R e. Ring ) -> R e. Ring ) |
| 9 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
| 10 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 11 |
2 9 1 10 6
|
scmatsrng |
|- ( ( N e. Fin /\ R e. Ring ) -> C e. ( SubRing ` A ) ) |
| 12 |
7
|
subrgring |
|- ( C e. ( SubRing ` A ) -> S e. Ring ) |
| 13 |
11 12
|
syl |
|- ( ( N e. Fin /\ R e. Ring ) -> S e. Ring ) |
| 14 |
1 2 3 4 5 6 7
|
scmatghm |
|- ( ( N e. Fin /\ R e. Ring ) -> F e. ( R GrpHom S ) ) |
| 15 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 16 |
|
eqid |
|- ( mulGrp ` S ) = ( mulGrp ` S ) |
| 17 |
1 2 3 4 5 6 7 15 16
|
scmatmhm |
|- ( ( N e. Fin /\ R e. Ring ) -> F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) |
| 18 |
14 17
|
jca |
|- ( ( N e. Fin /\ R e. Ring ) -> ( F e. ( R GrpHom S ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) |
| 19 |
15 16
|
isrhm |
|- ( F e. ( R RingHom S ) <-> ( ( R e. Ring /\ S e. Ring ) /\ ( F e. ( R GrpHom S ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) ) |
| 20 |
8 13 18 19
|
syl21anbrc |
|- ( ( N e. Fin /\ R e. Ring ) -> F e. ( R RingHom S ) ) |