Metamath Proof Explorer


Theorem scmatrhm

Description: There is a ring homomorphism from a ring to the ring of scalar matrices over this ring. (Contributed by AV, 29-Dec-2019)

Ref Expression
Hypotheses scmatrhmval.k
|- K = ( Base ` R )
scmatrhmval.a
|- A = ( N Mat R )
scmatrhmval.o
|- .1. = ( 1r ` A )
scmatrhmval.t
|- .* = ( .s ` A )
scmatrhmval.f
|- F = ( x e. K |-> ( x .* .1. ) )
scmatrhmval.c
|- C = ( N ScMat R )
scmatghm.s
|- S = ( A |`s C )
Assertion scmatrhm
|- ( ( N e. Fin /\ R e. Ring ) -> F e. ( R RingHom S ) )

Proof

Step Hyp Ref Expression
1 scmatrhmval.k
 |-  K = ( Base ` R )
2 scmatrhmval.a
 |-  A = ( N Mat R )
3 scmatrhmval.o
 |-  .1. = ( 1r ` A )
4 scmatrhmval.t
 |-  .* = ( .s ` A )
5 scmatrhmval.f
 |-  F = ( x e. K |-> ( x .* .1. ) )
6 scmatrhmval.c
 |-  C = ( N ScMat R )
7 scmatghm.s
 |-  S = ( A |`s C )
8 simpr
 |-  ( ( N e. Fin /\ R e. Ring ) -> R e. Ring )
9 eqid
 |-  ( Base ` A ) = ( Base ` A )
10 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
11 2 9 1 10 6 scmatsrng
 |-  ( ( N e. Fin /\ R e. Ring ) -> C e. ( SubRing ` A ) )
12 7 subrgring
 |-  ( C e. ( SubRing ` A ) -> S e. Ring )
13 11 12 syl
 |-  ( ( N e. Fin /\ R e. Ring ) -> S e. Ring )
14 1 2 3 4 5 6 7 scmatghm
 |-  ( ( N e. Fin /\ R e. Ring ) -> F e. ( R GrpHom S ) )
15 eqid
 |-  ( mulGrp ` R ) = ( mulGrp ` R )
16 eqid
 |-  ( mulGrp ` S ) = ( mulGrp ` S )
17 1 2 3 4 5 6 7 15 16 scmatmhm
 |-  ( ( N e. Fin /\ R e. Ring ) -> F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) )
18 14 17 jca
 |-  ( ( N e. Fin /\ R e. Ring ) -> ( F e. ( R GrpHom S ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) )
19 15 16 isrhm
 |-  ( F e. ( R RingHom S ) <-> ( ( R e. Ring /\ S e. Ring ) /\ ( F e. ( R GrpHom S ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) )
20 8 13 18 19 syl21anbrc
 |-  ( ( N e. Fin /\ R e. Ring ) -> F e. ( R RingHom S ) )