| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scmatrhmval.k |  |-  K = ( Base ` R ) | 
						
							| 2 |  | scmatrhmval.a |  |-  A = ( N Mat R ) | 
						
							| 3 |  | scmatrhmval.o |  |-  .1. = ( 1r ` A ) | 
						
							| 4 |  | scmatrhmval.t |  |-  .* = ( .s ` A ) | 
						
							| 5 |  | scmatrhmval.f |  |-  F = ( x e. K |-> ( x .* .1. ) ) | 
						
							| 6 |  | scmatrhmval.c |  |-  C = ( N ScMat R ) | 
						
							| 7 |  | scmatghm.s |  |-  S = ( A |`s C ) | 
						
							| 8 | 1 2 3 4 5 6 7 | scmatrhm |  |-  ( ( N e. Fin /\ R e. Ring ) -> F e. ( R RingHom S ) ) | 
						
							| 9 | 8 | 3adant2 |  |-  ( ( N e. Fin /\ N =/= (/) /\ R e. Ring ) -> F e. ( R RingHom S ) ) | 
						
							| 10 | 1 2 3 4 5 6 | scmatf1o |  |-  ( ( N e. Fin /\ N =/= (/) /\ R e. Ring ) -> F : K -1-1-onto-> C ) | 
						
							| 11 | 2 6 7 | scmatstrbas |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( Base ` S ) = C ) | 
						
							| 12 | 11 | 3adant2 |  |-  ( ( N e. Fin /\ N =/= (/) /\ R e. Ring ) -> ( Base ` S ) = C ) | 
						
							| 13 | 12 | f1oeq3d |  |-  ( ( N e. Fin /\ N =/= (/) /\ R e. Ring ) -> ( F : K -1-1-onto-> ( Base ` S ) <-> F : K -1-1-onto-> C ) ) | 
						
							| 14 | 10 13 | mpbird |  |-  ( ( N e. Fin /\ N =/= (/) /\ R e. Ring ) -> F : K -1-1-onto-> ( Base ` S ) ) | 
						
							| 15 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 16 | 1 15 | isrim |  |-  ( F e. ( R RingIso S ) <-> ( F e. ( R RingHom S ) /\ F : K -1-1-onto-> ( Base ` S ) ) ) | 
						
							| 17 | 9 14 16 | sylanbrc |  |-  ( ( N e. Fin /\ N =/= (/) /\ R e. Ring ) -> F e. ( R RingIso S ) ) |