Step |
Hyp |
Ref |
Expression |
1 |
|
scmatrhmval.k |
|- K = ( Base ` R ) |
2 |
|
scmatrhmval.a |
|- A = ( N Mat R ) |
3 |
|
scmatrhmval.o |
|- .1. = ( 1r ` A ) |
4 |
|
scmatrhmval.t |
|- .* = ( .s ` A ) |
5 |
|
scmatrhmval.f |
|- F = ( x e. K |-> ( x .* .1. ) ) |
6 |
|
scmatrhmval.c |
|- C = ( N ScMat R ) |
7 |
|
scmatghm.s |
|- S = ( A |`s C ) |
8 |
1 2 3 4 5 6 7
|
scmatrhm |
|- ( ( N e. Fin /\ R e. Ring ) -> F e. ( R RingHom S ) ) |
9 |
8
|
3adant2 |
|- ( ( N e. Fin /\ N =/= (/) /\ R e. Ring ) -> F e. ( R RingHom S ) ) |
10 |
1 2 3 4 5 6
|
scmatf1o |
|- ( ( N e. Fin /\ N =/= (/) /\ R e. Ring ) -> F : K -1-1-onto-> C ) |
11 |
2 6 7
|
scmatstrbas |
|- ( ( N e. Fin /\ R e. Ring ) -> ( Base ` S ) = C ) |
12 |
11
|
3adant2 |
|- ( ( N e. Fin /\ N =/= (/) /\ R e. Ring ) -> ( Base ` S ) = C ) |
13 |
12
|
f1oeq3d |
|- ( ( N e. Fin /\ N =/= (/) /\ R e. Ring ) -> ( F : K -1-1-onto-> ( Base ` S ) <-> F : K -1-1-onto-> C ) ) |
14 |
10 13
|
mpbird |
|- ( ( N e. Fin /\ N =/= (/) /\ R e. Ring ) -> F : K -1-1-onto-> ( Base ` S ) ) |
15 |
|
simp3 |
|- ( ( N e. Fin /\ N =/= (/) /\ R e. Ring ) -> R e. Ring ) |
16 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
17 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
18 |
2 16 1 17 6
|
scmatsrng |
|- ( ( N e. Fin /\ R e. Ring ) -> C e. ( SubRing ` A ) ) |
19 |
7
|
subrgring |
|- ( C e. ( SubRing ` A ) -> S e. Ring ) |
20 |
18 19
|
syl |
|- ( ( N e. Fin /\ R e. Ring ) -> S e. Ring ) |
21 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
22 |
1 21
|
isrim |
|- ( ( R e. Ring /\ S e. Ring ) -> ( F e. ( R RingIso S ) <-> ( F e. ( R RingHom S ) /\ F : K -1-1-onto-> ( Base ` S ) ) ) ) |
23 |
15 20 22
|
3imp3i2an |
|- ( ( N e. Fin /\ N =/= (/) /\ R e. Ring ) -> ( F e. ( R RingIso S ) <-> ( F e. ( R RingHom S ) /\ F : K -1-1-onto-> ( Base ` S ) ) ) ) |
24 |
9 14 23
|
mpbir2and |
|- ( ( N e. Fin /\ N =/= (/) /\ R e. Ring ) -> F e. ( R RingIso S ) ) |