| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scmatrhmval.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | scmatrhmval.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 3 |  | scmatrhmval.o | ⊢  1   =  ( 1r ‘ 𝐴 ) | 
						
							| 4 |  | scmatrhmval.t | ⊢  ∗   =  (  ·𝑠  ‘ 𝐴 ) | 
						
							| 5 |  | scmatrhmval.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝐾  ↦  ( 𝑥  ∗   1  ) ) | 
						
							| 6 |  | scmatrhmval.c | ⊢ 𝐶  =  ( 𝑁  ScMat  𝑅 ) | 
						
							| 7 |  | scmatghm.s | ⊢ 𝑆  =  ( 𝐴  ↾s  𝐶 ) | 
						
							| 8 | 1 2 3 4 5 6 7 | scmatrhm | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) ) | 
						
							| 9 | 8 | 3adant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑁  ≠  ∅  ∧  𝑅  ∈  Ring )  →  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) ) | 
						
							| 10 | 1 2 3 4 5 6 | scmatf1o | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑁  ≠  ∅  ∧  𝑅  ∈  Ring )  →  𝐹 : 𝐾 –1-1-onto→ 𝐶 ) | 
						
							| 11 | 2 6 7 | scmatstrbas | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( Base ‘ 𝑆 )  =  𝐶 ) | 
						
							| 12 | 11 | 3adant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑁  ≠  ∅  ∧  𝑅  ∈  Ring )  →  ( Base ‘ 𝑆 )  =  𝐶 ) | 
						
							| 13 | 12 | f1oeq3d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑁  ≠  ∅  ∧  𝑅  ∈  Ring )  →  ( 𝐹 : 𝐾 –1-1-onto→ ( Base ‘ 𝑆 )  ↔  𝐹 : 𝐾 –1-1-onto→ 𝐶 ) ) | 
						
							| 14 | 10 13 | mpbird | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑁  ≠  ∅  ∧  𝑅  ∈  Ring )  →  𝐹 : 𝐾 –1-1-onto→ ( Base ‘ 𝑆 ) ) | 
						
							| 15 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 16 | 1 15 | isrim | ⊢ ( 𝐹  ∈  ( 𝑅  RingIso  𝑆 )  ↔  ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝐹 : 𝐾 –1-1-onto→ ( Base ‘ 𝑆 ) ) ) | 
						
							| 17 | 9 14 16 | sylanbrc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑁  ≠  ∅  ∧  𝑅  ∈  Ring )  →  𝐹  ∈  ( 𝑅  RingIso  𝑆 ) ) |