| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scmatric.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | scmatric.c | ⊢ 𝐶  =  ( 𝑁  ScMat  𝑅 ) | 
						
							| 3 |  | scmatric.s | ⊢ 𝑆  =  ( 𝐴  ↾s  𝐶 ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 5 |  | eqid | ⊢ ( 1r ‘ 𝐴 )  =  ( 1r ‘ 𝐴 ) | 
						
							| 6 |  | eqid | ⊢ (  ·𝑠  ‘ 𝐴 )  =  (  ·𝑠  ‘ 𝐴 ) | 
						
							| 7 |  | eqid | ⊢ ( 𝑥  ∈  ( Base ‘ 𝑅 )  ↦  ( 𝑥 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) )  =  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ↦  ( 𝑥 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ) | 
						
							| 8 | 4 1 5 6 7 2 3 | scmatrngiso | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑁  ≠  ∅  ∧  𝑅  ∈  Ring )  →  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ↦  ( 𝑥 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) )  ∈  ( 𝑅  RingIso  𝑆 ) ) | 
						
							| 9 | 8 | ne0d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑁  ≠  ∅  ∧  𝑅  ∈  Ring )  →  ( 𝑅  RingIso  𝑆 )  ≠  ∅ ) | 
						
							| 10 |  | brric | ⊢ ( 𝑅  ≃𝑟  𝑆  ↔  ( 𝑅  RingIso  𝑆 )  ≠  ∅ ) | 
						
							| 11 | 9 10 | sylibr | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑁  ≠  ∅  ∧  𝑅  ∈  Ring )  →  𝑅  ≃𝑟  𝑆 ) |