| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 2 | 1 | snid | ⊢ ∅  ∈  { ∅ } | 
						
							| 3 |  | mat0dimbas0 | ⊢ ( 𝑅  ∈  Ring  →  ( Base ‘ ( ∅  Mat  𝑅 ) )  =  { ∅ } ) | 
						
							| 4 | 2 3 | eleqtrrid | ⊢ ( 𝑅  ∈  Ring  →  ∅  ∈  ( Base ‘ ( ∅  Mat  𝑅 ) ) ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 6 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 7 | 5 6 | ringidcl | ⊢ ( 𝑅  ∈  Ring  →  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 8 |  | oveq1 | ⊢ ( 𝑐  =  ( 1r ‘ 𝑅 )  →  ( 𝑐 (  ·𝑠  ‘ ( ∅  Mat  𝑅 ) ) ∅ )  =  ( ( 1r ‘ 𝑅 ) (  ·𝑠  ‘ ( ∅  Mat  𝑅 ) ) ∅ ) ) | 
						
							| 9 | 8 | eqeq2d | ⊢ ( 𝑐  =  ( 1r ‘ 𝑅 )  →  ( ∅  =  ( 𝑐 (  ·𝑠  ‘ ( ∅  Mat  𝑅 ) ) ∅ )  ↔  ∅  =  ( ( 1r ‘ 𝑅 ) (  ·𝑠  ‘ ( ∅  Mat  𝑅 ) ) ∅ ) ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑐  =  ( 1r ‘ 𝑅 ) )  →  ( ∅  =  ( 𝑐 (  ·𝑠  ‘ ( ∅  Mat  𝑅 ) ) ∅ )  ↔  ∅  =  ( ( 1r ‘ 𝑅 ) (  ·𝑠  ‘ ( ∅  Mat  𝑅 ) ) ∅ ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( ∅  Mat  𝑅 )  =  ( ∅  Mat  𝑅 ) | 
						
							| 12 | 11 | mat0dimscm | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) )  →  ( ( 1r ‘ 𝑅 ) (  ·𝑠  ‘ ( ∅  Mat  𝑅 ) ) ∅ )  =  ∅ ) | 
						
							| 13 | 7 12 | mpdan | ⊢ ( 𝑅  ∈  Ring  →  ( ( 1r ‘ 𝑅 ) (  ·𝑠  ‘ ( ∅  Mat  𝑅 ) ) ∅ )  =  ∅ ) | 
						
							| 14 | 13 | eqcomd | ⊢ ( 𝑅  ∈  Ring  →  ∅  =  ( ( 1r ‘ 𝑅 ) (  ·𝑠  ‘ ( ∅  Mat  𝑅 ) ) ∅ ) ) | 
						
							| 15 | 7 10 14 | rspcedvd | ⊢ ( 𝑅  ∈  Ring  →  ∃ 𝑐  ∈  ( Base ‘ 𝑅 ) ∅  =  ( 𝑐 (  ·𝑠  ‘ ( ∅  Mat  𝑅 ) ) ∅ ) ) | 
						
							| 16 | 11 | mat0dimid | ⊢ ( 𝑅  ∈  Ring  →  ( 1r ‘ ( ∅  Mat  𝑅 ) )  =  ∅ ) | 
						
							| 17 | 16 | oveq2d | ⊢ ( 𝑅  ∈  Ring  →  ( 𝑐 (  ·𝑠  ‘ ( ∅  Mat  𝑅 ) ) ( 1r ‘ ( ∅  Mat  𝑅 ) ) )  =  ( 𝑐 (  ·𝑠  ‘ ( ∅  Mat  𝑅 ) ) ∅ ) ) | 
						
							| 18 | 17 | eqeq2d | ⊢ ( 𝑅  ∈  Ring  →  ( ∅  =  ( 𝑐 (  ·𝑠  ‘ ( ∅  Mat  𝑅 ) ) ( 1r ‘ ( ∅  Mat  𝑅 ) ) )  ↔  ∅  =  ( 𝑐 (  ·𝑠  ‘ ( ∅  Mat  𝑅 ) ) ∅ ) ) ) | 
						
							| 19 | 18 | rexbidv | ⊢ ( 𝑅  ∈  Ring  →  ( ∃ 𝑐  ∈  ( Base ‘ 𝑅 ) ∅  =  ( 𝑐 (  ·𝑠  ‘ ( ∅  Mat  𝑅 ) ) ( 1r ‘ ( ∅  Mat  𝑅 ) ) )  ↔  ∃ 𝑐  ∈  ( Base ‘ 𝑅 ) ∅  =  ( 𝑐 (  ·𝑠  ‘ ( ∅  Mat  𝑅 ) ) ∅ ) ) ) | 
						
							| 20 | 15 19 | mpbird | ⊢ ( 𝑅  ∈  Ring  →  ∃ 𝑐  ∈  ( Base ‘ 𝑅 ) ∅  =  ( 𝑐 (  ·𝑠  ‘ ( ∅  Mat  𝑅 ) ) ( 1r ‘ ( ∅  Mat  𝑅 ) ) ) ) | 
						
							| 21 |  | 0fi | ⊢ ∅  ∈  Fin | 
						
							| 22 |  | eqid | ⊢ ( Base ‘ ( ∅  Mat  𝑅 ) )  =  ( Base ‘ ( ∅  Mat  𝑅 ) ) | 
						
							| 23 |  | eqid | ⊢ ( 1r ‘ ( ∅  Mat  𝑅 ) )  =  ( 1r ‘ ( ∅  Mat  𝑅 ) ) | 
						
							| 24 |  | eqid | ⊢ (  ·𝑠  ‘ ( ∅  Mat  𝑅 ) )  =  (  ·𝑠  ‘ ( ∅  Mat  𝑅 ) ) | 
						
							| 25 |  | eqid | ⊢ ( ∅  ScMat  𝑅 )  =  ( ∅  ScMat  𝑅 ) | 
						
							| 26 | 5 11 22 23 24 25 | scmatel | ⊢ ( ( ∅  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( ∅  ∈  ( ∅  ScMat  𝑅 )  ↔  ( ∅  ∈  ( Base ‘ ( ∅  Mat  𝑅 ) )  ∧  ∃ 𝑐  ∈  ( Base ‘ 𝑅 ) ∅  =  ( 𝑐 (  ·𝑠  ‘ ( ∅  Mat  𝑅 ) ) ( 1r ‘ ( ∅  Mat  𝑅 ) ) ) ) ) ) | 
						
							| 27 | 21 26 | mpan | ⊢ ( 𝑅  ∈  Ring  →  ( ∅  ∈  ( ∅  ScMat  𝑅 )  ↔  ( ∅  ∈  ( Base ‘ ( ∅  Mat  𝑅 ) )  ∧  ∃ 𝑐  ∈  ( Base ‘ 𝑅 ) ∅  =  ( 𝑐 (  ·𝑠  ‘ ( ∅  Mat  𝑅 ) ) ( 1r ‘ ( ∅  Mat  𝑅 ) ) ) ) ) ) | 
						
							| 28 | 4 20 27 | mpbir2and | ⊢ ( 𝑅  ∈  Ring  →  ∅  ∈  ( ∅  ScMat  𝑅 ) ) |