| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mat1scmat.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | mat1scmat.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | hash1snb | ⊢ ( 𝑁  ∈  𝑉  →  ( ( ♯ ‘ 𝑁 )  =  1  ↔  ∃ 𝑒 𝑁  =  { 𝑒 } ) ) | 
						
							| 4 |  | simpr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  ( Base ‘ ( { 𝑒 }  Mat  𝑅 ) ) )  →  𝑀  ∈  ( Base ‘ ( { 𝑒 }  Mat  𝑅 ) ) ) | 
						
							| 5 |  | eqid | ⊢ ( { 𝑒 }  Mat  𝑅 )  =  ( { 𝑒 }  Mat  𝑅 ) | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 7 |  | eqid | ⊢ 〈 𝑒 ,  𝑒 〉  =  〈 𝑒 ,  𝑒 〉 | 
						
							| 8 | 5 6 7 | mat1dimelbas | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑒  ∈  V )  →  ( 𝑀  ∈  ( Base ‘ ( { 𝑒 }  Mat  𝑅 ) )  ↔  ∃ 𝑐  ∈  ( Base ‘ 𝑅 ) 𝑀  =  { 〈 〈 𝑒 ,  𝑒 〉 ,  𝑐 〉 } ) ) | 
						
							| 9 | 8 | elvd | ⊢ ( 𝑅  ∈  Ring  →  ( 𝑀  ∈  ( Base ‘ ( { 𝑒 }  Mat  𝑅 ) )  ↔  ∃ 𝑐  ∈  ( Base ‘ 𝑅 ) 𝑀  =  { 〈 〈 𝑒 ,  𝑒 〉 ,  𝑐 〉 } ) ) | 
						
							| 10 |  | simpr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑐  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑀  =  { 〈 〈 𝑒 ,  𝑒 〉 ,  𝑐 〉 } )  →  𝑀  =  { 〈 〈 𝑒 ,  𝑒 〉 ,  𝑐 〉 } ) | 
						
							| 11 |  | vex | ⊢ 𝑒  ∈  V | 
						
							| 12 | 11 | a1i | ⊢ ( 𝑐  ∈  ( Base ‘ 𝑅 )  →  𝑒  ∈  V ) | 
						
							| 13 | 5 6 7 | mat1dimid | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑒  ∈  V )  →  ( 1r ‘ ( { 𝑒 }  Mat  𝑅 ) )  =  { 〈 〈 𝑒 ,  𝑒 〉 ,  ( 1r ‘ 𝑅 ) 〉 } ) | 
						
							| 14 | 12 13 | sylan2 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑐  ∈  ( Base ‘ 𝑅 ) )  →  ( 1r ‘ ( { 𝑒 }  Mat  𝑅 ) )  =  { 〈 〈 𝑒 ,  𝑒 〉 ,  ( 1r ‘ 𝑅 ) 〉 } ) | 
						
							| 15 | 14 | oveq2d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑐  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑐 (  ·𝑠  ‘ ( { 𝑒 }  Mat  𝑅 ) ) ( 1r ‘ ( { 𝑒 }  Mat  𝑅 ) ) )  =  ( 𝑐 (  ·𝑠  ‘ ( { 𝑒 }  Mat  𝑅 ) ) { 〈 〈 𝑒 ,  𝑒 〉 ,  ( 1r ‘ 𝑅 ) 〉 } ) ) | 
						
							| 16 |  | simpl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑐  ∈  ( Base ‘ 𝑅 ) )  →  𝑅  ∈  Ring ) | 
						
							| 17 | 16 11 | jctir | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑐  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑅  ∈  Ring  ∧  𝑒  ∈  V ) ) | 
						
							| 18 |  | simpr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑐  ∈  ( Base ‘ 𝑅 ) )  →  𝑐  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 19 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 20 | 6 19 | ringidcl | ⊢ ( 𝑅  ∈  Ring  →  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑐  ∈  ( Base ‘ 𝑅 ) )  →  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 22 | 5 6 7 | mat1dimscm | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑒  ∈  V )  ∧  ( 𝑐  ∈  ( Base ‘ 𝑅 )  ∧  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) )  →  ( 𝑐 (  ·𝑠  ‘ ( { 𝑒 }  Mat  𝑅 ) ) { 〈 〈 𝑒 ,  𝑒 〉 ,  ( 1r ‘ 𝑅 ) 〉 } )  =  { 〈 〈 𝑒 ,  𝑒 〉 ,  ( 𝑐 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) 〉 } ) | 
						
							| 23 | 17 18 21 22 | syl12anc | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑐  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑐 (  ·𝑠  ‘ ( { 𝑒 }  Mat  𝑅 ) ) { 〈 〈 𝑒 ,  𝑒 〉 ,  ( 1r ‘ 𝑅 ) 〉 } )  =  { 〈 〈 𝑒 ,  𝑒 〉 ,  ( 𝑐 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) 〉 } ) | 
						
							| 24 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 25 | 6 24 19 | ringridm | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑐  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑐 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) )  =  𝑐 ) | 
						
							| 26 | 25 | opeq2d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑐  ∈  ( Base ‘ 𝑅 ) )  →  〈 〈 𝑒 ,  𝑒 〉 ,  ( 𝑐 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) 〉  =  〈 〈 𝑒 ,  𝑒 〉 ,  𝑐 〉 ) | 
						
							| 27 | 26 | sneqd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑐  ∈  ( Base ‘ 𝑅 ) )  →  { 〈 〈 𝑒 ,  𝑒 〉 ,  ( 𝑐 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) 〉 }  =  { 〈 〈 𝑒 ,  𝑒 〉 ,  𝑐 〉 } ) | 
						
							| 28 | 15 23 27 | 3eqtrrd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑐  ∈  ( Base ‘ 𝑅 ) )  →  { 〈 〈 𝑒 ,  𝑒 〉 ,  𝑐 〉 }  =  ( 𝑐 (  ·𝑠  ‘ ( { 𝑒 }  Mat  𝑅 ) ) ( 1r ‘ ( { 𝑒 }  Mat  𝑅 ) ) ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑐  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑀  =  { 〈 〈 𝑒 ,  𝑒 〉 ,  𝑐 〉 } )  →  { 〈 〈 𝑒 ,  𝑒 〉 ,  𝑐 〉 }  =  ( 𝑐 (  ·𝑠  ‘ ( { 𝑒 }  Mat  𝑅 ) ) ( 1r ‘ ( { 𝑒 }  Mat  𝑅 ) ) ) ) | 
						
							| 30 | 10 29 | eqtrd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑐  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑀  =  { 〈 〈 𝑒 ,  𝑒 〉 ,  𝑐 〉 } )  →  𝑀  =  ( 𝑐 (  ·𝑠  ‘ ( { 𝑒 }  Mat  𝑅 ) ) ( 1r ‘ ( { 𝑒 }  Mat  𝑅 ) ) ) ) | 
						
							| 31 | 30 | ex | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑐  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑀  =  { 〈 〈 𝑒 ,  𝑒 〉 ,  𝑐 〉 }  →  𝑀  =  ( 𝑐 (  ·𝑠  ‘ ( { 𝑒 }  Mat  𝑅 ) ) ( 1r ‘ ( { 𝑒 }  Mat  𝑅 ) ) ) ) ) | 
						
							| 32 | 31 | reximdva | ⊢ ( 𝑅  ∈  Ring  →  ( ∃ 𝑐  ∈  ( Base ‘ 𝑅 ) 𝑀  =  { 〈 〈 𝑒 ,  𝑒 〉 ,  𝑐 〉 }  →  ∃ 𝑐  ∈  ( Base ‘ 𝑅 ) 𝑀  =  ( 𝑐 (  ·𝑠  ‘ ( { 𝑒 }  Mat  𝑅 ) ) ( 1r ‘ ( { 𝑒 }  Mat  𝑅 ) ) ) ) ) | 
						
							| 33 | 9 32 | sylbid | ⊢ ( 𝑅  ∈  Ring  →  ( 𝑀  ∈  ( Base ‘ ( { 𝑒 }  Mat  𝑅 ) )  →  ∃ 𝑐  ∈  ( Base ‘ 𝑅 ) 𝑀  =  ( 𝑐 (  ·𝑠  ‘ ( { 𝑒 }  Mat  𝑅 ) ) ( 1r ‘ ( { 𝑒 }  Mat  𝑅 ) ) ) ) ) | 
						
							| 34 | 33 | imp | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  ( Base ‘ ( { 𝑒 }  Mat  𝑅 ) ) )  →  ∃ 𝑐  ∈  ( Base ‘ 𝑅 ) 𝑀  =  ( 𝑐 (  ·𝑠  ‘ ( { 𝑒 }  Mat  𝑅 ) ) ( 1r ‘ ( { 𝑒 }  Mat  𝑅 ) ) ) ) | 
						
							| 35 |  | snfi | ⊢ { 𝑒 }  ∈  Fin | 
						
							| 36 |  | simpl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  ( Base ‘ ( { 𝑒 }  Mat  𝑅 ) ) )  →  𝑅  ∈  Ring ) | 
						
							| 37 |  | eqid | ⊢ ( Base ‘ ( { 𝑒 }  Mat  𝑅 ) )  =  ( Base ‘ ( { 𝑒 }  Mat  𝑅 ) ) | 
						
							| 38 |  | eqid | ⊢ ( 1r ‘ ( { 𝑒 }  Mat  𝑅 ) )  =  ( 1r ‘ ( { 𝑒 }  Mat  𝑅 ) ) | 
						
							| 39 |  | eqid | ⊢ (  ·𝑠  ‘ ( { 𝑒 }  Mat  𝑅 ) )  =  (  ·𝑠  ‘ ( { 𝑒 }  Mat  𝑅 ) ) | 
						
							| 40 |  | eqid | ⊢ ( { 𝑒 }  ScMat  𝑅 )  =  ( { 𝑒 }  ScMat  𝑅 ) | 
						
							| 41 | 6 5 37 38 39 40 | scmatel | ⊢ ( ( { 𝑒 }  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑀  ∈  ( { 𝑒 }  ScMat  𝑅 )  ↔  ( 𝑀  ∈  ( Base ‘ ( { 𝑒 }  Mat  𝑅 ) )  ∧  ∃ 𝑐  ∈  ( Base ‘ 𝑅 ) 𝑀  =  ( 𝑐 (  ·𝑠  ‘ ( { 𝑒 }  Mat  𝑅 ) ) ( 1r ‘ ( { 𝑒 }  Mat  𝑅 ) ) ) ) ) ) | 
						
							| 42 | 35 36 41 | sylancr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  ( Base ‘ ( { 𝑒 }  Mat  𝑅 ) ) )  →  ( 𝑀  ∈  ( { 𝑒 }  ScMat  𝑅 )  ↔  ( 𝑀  ∈  ( Base ‘ ( { 𝑒 }  Mat  𝑅 ) )  ∧  ∃ 𝑐  ∈  ( Base ‘ 𝑅 ) 𝑀  =  ( 𝑐 (  ·𝑠  ‘ ( { 𝑒 }  Mat  𝑅 ) ) ( 1r ‘ ( { 𝑒 }  Mat  𝑅 ) ) ) ) ) ) | 
						
							| 43 | 4 34 42 | mpbir2and | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  ( Base ‘ ( { 𝑒 }  Mat  𝑅 ) ) )  →  𝑀  ∈  ( { 𝑒 }  ScMat  𝑅 ) ) | 
						
							| 44 | 43 | ex | ⊢ ( 𝑅  ∈  Ring  →  ( 𝑀  ∈  ( Base ‘ ( { 𝑒 }  Mat  𝑅 ) )  →  𝑀  ∈  ( { 𝑒 }  ScMat  𝑅 ) ) ) | 
						
							| 45 | 1 | fveq2i | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) | 
						
							| 46 | 2 45 | eqtri | ⊢ 𝐵  =  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) | 
						
							| 47 |  | fvoveq1 | ⊢ ( 𝑁  =  { 𝑒 }  →  ( Base ‘ ( 𝑁  Mat  𝑅 ) )  =  ( Base ‘ ( { 𝑒 }  Mat  𝑅 ) ) ) | 
						
							| 48 | 46 47 | eqtrid | ⊢ ( 𝑁  =  { 𝑒 }  →  𝐵  =  ( Base ‘ ( { 𝑒 }  Mat  𝑅 ) ) ) | 
						
							| 49 | 48 | eleq2d | ⊢ ( 𝑁  =  { 𝑒 }  →  ( 𝑀  ∈  𝐵  ↔  𝑀  ∈  ( Base ‘ ( { 𝑒 }  Mat  𝑅 ) ) ) ) | 
						
							| 50 |  | oveq1 | ⊢ ( 𝑁  =  { 𝑒 }  →  ( 𝑁  ScMat  𝑅 )  =  ( { 𝑒 }  ScMat  𝑅 ) ) | 
						
							| 51 | 50 | eleq2d | ⊢ ( 𝑁  =  { 𝑒 }  →  ( 𝑀  ∈  ( 𝑁  ScMat  𝑅 )  ↔  𝑀  ∈  ( { 𝑒 }  ScMat  𝑅 ) ) ) | 
						
							| 52 | 49 51 | imbi12d | ⊢ ( 𝑁  =  { 𝑒 }  →  ( ( 𝑀  ∈  𝐵  →  𝑀  ∈  ( 𝑁  ScMat  𝑅 ) )  ↔  ( 𝑀  ∈  ( Base ‘ ( { 𝑒 }  Mat  𝑅 ) )  →  𝑀  ∈  ( { 𝑒 }  ScMat  𝑅 ) ) ) ) | 
						
							| 53 | 44 52 | imbitrrid | ⊢ ( 𝑁  =  { 𝑒 }  →  ( 𝑅  ∈  Ring  →  ( 𝑀  ∈  𝐵  →  𝑀  ∈  ( 𝑁  ScMat  𝑅 ) ) ) ) | 
						
							| 54 | 53 | exlimiv | ⊢ ( ∃ 𝑒 𝑁  =  { 𝑒 }  →  ( 𝑅  ∈  Ring  →  ( 𝑀  ∈  𝐵  →  𝑀  ∈  ( 𝑁  ScMat  𝑅 ) ) ) ) | 
						
							| 55 | 3 54 | biimtrdi | ⊢ ( 𝑁  ∈  𝑉  →  ( ( ♯ ‘ 𝑁 )  =  1  →  ( 𝑅  ∈  Ring  →  ( 𝑀  ∈  𝐵  →  𝑀  ∈  ( 𝑁  ScMat  𝑅 ) ) ) ) ) | 
						
							| 56 | 55 | 3imp | ⊢ ( ( 𝑁  ∈  𝑉  ∧  ( ♯ ‘ 𝑁 )  =  1  ∧  𝑅  ∈  Ring )  →  ( 𝑀  ∈  𝐵  →  𝑀  ∈  ( 𝑁  ScMat  𝑅 ) ) ) |