| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mat1scmat.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | mat1scmat.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | hash1snb |  |-  ( N e. V -> ( ( # ` N ) = 1 <-> E. e N = { e } ) ) | 
						
							| 4 |  | simpr |  |-  ( ( R e. Ring /\ M e. ( Base ` ( { e } Mat R ) ) ) -> M e. ( Base ` ( { e } Mat R ) ) ) | 
						
							| 5 |  | eqid |  |-  ( { e } Mat R ) = ( { e } Mat R ) | 
						
							| 6 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 7 |  | eqid |  |-  <. e , e >. = <. e , e >. | 
						
							| 8 | 5 6 7 | mat1dimelbas |  |-  ( ( R e. Ring /\ e e. _V ) -> ( M e. ( Base ` ( { e } Mat R ) ) <-> E. c e. ( Base ` R ) M = { <. <. e , e >. , c >. } ) ) | 
						
							| 9 | 8 | elvd |  |-  ( R e. Ring -> ( M e. ( Base ` ( { e } Mat R ) ) <-> E. c e. ( Base ` R ) M = { <. <. e , e >. , c >. } ) ) | 
						
							| 10 |  | simpr |  |-  ( ( ( R e. Ring /\ c e. ( Base ` R ) ) /\ M = { <. <. e , e >. , c >. } ) -> M = { <. <. e , e >. , c >. } ) | 
						
							| 11 |  | vex |  |-  e e. _V | 
						
							| 12 | 11 | a1i |  |-  ( c e. ( Base ` R ) -> e e. _V ) | 
						
							| 13 | 5 6 7 | mat1dimid |  |-  ( ( R e. Ring /\ e e. _V ) -> ( 1r ` ( { e } Mat R ) ) = { <. <. e , e >. , ( 1r ` R ) >. } ) | 
						
							| 14 | 12 13 | sylan2 |  |-  ( ( R e. Ring /\ c e. ( Base ` R ) ) -> ( 1r ` ( { e } Mat R ) ) = { <. <. e , e >. , ( 1r ` R ) >. } ) | 
						
							| 15 | 14 | oveq2d |  |-  ( ( R e. Ring /\ c e. ( Base ` R ) ) -> ( c ( .s ` ( { e } Mat R ) ) ( 1r ` ( { e } Mat R ) ) ) = ( c ( .s ` ( { e } Mat R ) ) { <. <. e , e >. , ( 1r ` R ) >. } ) ) | 
						
							| 16 |  | simpl |  |-  ( ( R e. Ring /\ c e. ( Base ` R ) ) -> R e. Ring ) | 
						
							| 17 | 16 11 | jctir |  |-  ( ( R e. Ring /\ c e. ( Base ` R ) ) -> ( R e. Ring /\ e e. _V ) ) | 
						
							| 18 |  | simpr |  |-  ( ( R e. Ring /\ c e. ( Base ` R ) ) -> c e. ( Base ` R ) ) | 
						
							| 19 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 20 | 6 19 | ringidcl |  |-  ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 21 | 20 | adantr |  |-  ( ( R e. Ring /\ c e. ( Base ` R ) ) -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 22 | 5 6 7 | mat1dimscm |  |-  ( ( ( R e. Ring /\ e e. _V ) /\ ( c e. ( Base ` R ) /\ ( 1r ` R ) e. ( Base ` R ) ) ) -> ( c ( .s ` ( { e } Mat R ) ) { <. <. e , e >. , ( 1r ` R ) >. } ) = { <. <. e , e >. , ( c ( .r ` R ) ( 1r ` R ) ) >. } ) | 
						
							| 23 | 17 18 21 22 | syl12anc |  |-  ( ( R e. Ring /\ c e. ( Base ` R ) ) -> ( c ( .s ` ( { e } Mat R ) ) { <. <. e , e >. , ( 1r ` R ) >. } ) = { <. <. e , e >. , ( c ( .r ` R ) ( 1r ` R ) ) >. } ) | 
						
							| 24 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 25 | 6 24 19 | ringridm |  |-  ( ( R e. Ring /\ c e. ( Base ` R ) ) -> ( c ( .r ` R ) ( 1r ` R ) ) = c ) | 
						
							| 26 | 25 | opeq2d |  |-  ( ( R e. Ring /\ c e. ( Base ` R ) ) -> <. <. e , e >. , ( c ( .r ` R ) ( 1r ` R ) ) >. = <. <. e , e >. , c >. ) | 
						
							| 27 | 26 | sneqd |  |-  ( ( R e. Ring /\ c e. ( Base ` R ) ) -> { <. <. e , e >. , ( c ( .r ` R ) ( 1r ` R ) ) >. } = { <. <. e , e >. , c >. } ) | 
						
							| 28 | 15 23 27 | 3eqtrrd |  |-  ( ( R e. Ring /\ c e. ( Base ` R ) ) -> { <. <. e , e >. , c >. } = ( c ( .s ` ( { e } Mat R ) ) ( 1r ` ( { e } Mat R ) ) ) ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ( R e. Ring /\ c e. ( Base ` R ) ) /\ M = { <. <. e , e >. , c >. } ) -> { <. <. e , e >. , c >. } = ( c ( .s ` ( { e } Mat R ) ) ( 1r ` ( { e } Mat R ) ) ) ) | 
						
							| 30 | 10 29 | eqtrd |  |-  ( ( ( R e. Ring /\ c e. ( Base ` R ) ) /\ M = { <. <. e , e >. , c >. } ) -> M = ( c ( .s ` ( { e } Mat R ) ) ( 1r ` ( { e } Mat R ) ) ) ) | 
						
							| 31 | 30 | ex |  |-  ( ( R e. Ring /\ c e. ( Base ` R ) ) -> ( M = { <. <. e , e >. , c >. } -> M = ( c ( .s ` ( { e } Mat R ) ) ( 1r ` ( { e } Mat R ) ) ) ) ) | 
						
							| 32 | 31 | reximdva |  |-  ( R e. Ring -> ( E. c e. ( Base ` R ) M = { <. <. e , e >. , c >. } -> E. c e. ( Base ` R ) M = ( c ( .s ` ( { e } Mat R ) ) ( 1r ` ( { e } Mat R ) ) ) ) ) | 
						
							| 33 | 9 32 | sylbid |  |-  ( R e. Ring -> ( M e. ( Base ` ( { e } Mat R ) ) -> E. c e. ( Base ` R ) M = ( c ( .s ` ( { e } Mat R ) ) ( 1r ` ( { e } Mat R ) ) ) ) ) | 
						
							| 34 | 33 | imp |  |-  ( ( R e. Ring /\ M e. ( Base ` ( { e } Mat R ) ) ) -> E. c e. ( Base ` R ) M = ( c ( .s ` ( { e } Mat R ) ) ( 1r ` ( { e } Mat R ) ) ) ) | 
						
							| 35 |  | snfi |  |-  { e } e. Fin | 
						
							| 36 |  | simpl |  |-  ( ( R e. Ring /\ M e. ( Base ` ( { e } Mat R ) ) ) -> R e. Ring ) | 
						
							| 37 |  | eqid |  |-  ( Base ` ( { e } Mat R ) ) = ( Base ` ( { e } Mat R ) ) | 
						
							| 38 |  | eqid |  |-  ( 1r ` ( { e } Mat R ) ) = ( 1r ` ( { e } Mat R ) ) | 
						
							| 39 |  | eqid |  |-  ( .s ` ( { e } Mat R ) ) = ( .s ` ( { e } Mat R ) ) | 
						
							| 40 |  | eqid |  |-  ( { e } ScMat R ) = ( { e } ScMat R ) | 
						
							| 41 | 6 5 37 38 39 40 | scmatel |  |-  ( ( { e } e. Fin /\ R e. Ring ) -> ( M e. ( { e } ScMat R ) <-> ( M e. ( Base ` ( { e } Mat R ) ) /\ E. c e. ( Base ` R ) M = ( c ( .s ` ( { e } Mat R ) ) ( 1r ` ( { e } Mat R ) ) ) ) ) ) | 
						
							| 42 | 35 36 41 | sylancr |  |-  ( ( R e. Ring /\ M e. ( Base ` ( { e } Mat R ) ) ) -> ( M e. ( { e } ScMat R ) <-> ( M e. ( Base ` ( { e } Mat R ) ) /\ E. c e. ( Base ` R ) M = ( c ( .s ` ( { e } Mat R ) ) ( 1r ` ( { e } Mat R ) ) ) ) ) ) | 
						
							| 43 | 4 34 42 | mpbir2and |  |-  ( ( R e. Ring /\ M e. ( Base ` ( { e } Mat R ) ) ) -> M e. ( { e } ScMat R ) ) | 
						
							| 44 | 43 | ex |  |-  ( R e. Ring -> ( M e. ( Base ` ( { e } Mat R ) ) -> M e. ( { e } ScMat R ) ) ) | 
						
							| 45 | 1 | fveq2i |  |-  ( Base ` A ) = ( Base ` ( N Mat R ) ) | 
						
							| 46 | 2 45 | eqtri |  |-  B = ( Base ` ( N Mat R ) ) | 
						
							| 47 |  | fvoveq1 |  |-  ( N = { e } -> ( Base ` ( N Mat R ) ) = ( Base ` ( { e } Mat R ) ) ) | 
						
							| 48 | 46 47 | eqtrid |  |-  ( N = { e } -> B = ( Base ` ( { e } Mat R ) ) ) | 
						
							| 49 | 48 | eleq2d |  |-  ( N = { e } -> ( M e. B <-> M e. ( Base ` ( { e } Mat R ) ) ) ) | 
						
							| 50 |  | oveq1 |  |-  ( N = { e } -> ( N ScMat R ) = ( { e } ScMat R ) ) | 
						
							| 51 | 50 | eleq2d |  |-  ( N = { e } -> ( M e. ( N ScMat R ) <-> M e. ( { e } ScMat R ) ) ) | 
						
							| 52 | 49 51 | imbi12d |  |-  ( N = { e } -> ( ( M e. B -> M e. ( N ScMat R ) ) <-> ( M e. ( Base ` ( { e } Mat R ) ) -> M e. ( { e } ScMat R ) ) ) ) | 
						
							| 53 | 44 52 | imbitrrid |  |-  ( N = { e } -> ( R e. Ring -> ( M e. B -> M e. ( N ScMat R ) ) ) ) | 
						
							| 54 | 53 | exlimiv |  |-  ( E. e N = { e } -> ( R e. Ring -> ( M e. B -> M e. ( N ScMat R ) ) ) ) | 
						
							| 55 | 3 54 | biimtrdi |  |-  ( N e. V -> ( ( # ` N ) = 1 -> ( R e. Ring -> ( M e. B -> M e. ( N ScMat R ) ) ) ) ) | 
						
							| 56 | 55 | 3imp |  |-  ( ( N e. V /\ ( # ` N ) = 1 /\ R e. Ring ) -> ( M e. B -> M e. ( N ScMat R ) ) ) |