| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mat1dim.a | ⊢ 𝐴  =  ( { 𝐸 }  Mat  𝑅 ) | 
						
							| 2 |  | mat1dim.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 3 |  | mat1dim.o | ⊢ 𝑂  =  〈 𝐸 ,  𝐸 〉 | 
						
							| 4 |  | snfi | ⊢ { 𝐸 }  ∈  Fin | 
						
							| 5 | 4 | a1i | ⊢ ( 𝐸  ∈  𝑉  →  { 𝐸 }  ∈  Fin ) | 
						
							| 6 | 5 | anim2i | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  ( 𝑅  ∈  Ring  ∧  { 𝐸 }  ∈  Fin ) ) | 
						
							| 7 | 6 | ancomd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  ( { 𝐸 }  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 8 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 9 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 10 | 1 8 9 | mat1 | ⊢ ( ( { 𝐸 }  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 1r ‘ 𝐴 )  =  ( 𝑥  ∈  { 𝐸 } ,  𝑦  ∈  { 𝐸 }  ↦  if ( 𝑥  =  𝑦 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 11 | 7 10 | syl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  ( 1r ‘ 𝐴 )  =  ( 𝑥  ∈  { 𝐸 } ,  𝑦  ∈  { 𝐸 }  ↦  if ( 𝑥  =  𝑦 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  𝐸  ∈  𝑉 ) | 
						
							| 13 |  | fvex | ⊢ ( 1r ‘ 𝑅 )  ∈  V | 
						
							| 14 |  | fvex | ⊢ ( 0g ‘ 𝑅 )  ∈  V | 
						
							| 15 | 13 14 | ifex | ⊢ if ( 𝐸  =  𝐸 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) )  ∈  V | 
						
							| 16 | 15 | a1i | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  if ( 𝐸  =  𝐸 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) )  ∈  V ) | 
						
							| 17 |  | eqid | ⊢ ( 𝑥  ∈  { 𝐸 } ,  𝑦  ∈  { 𝐸 }  ↦  if ( 𝑥  =  𝑦 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) )  =  ( 𝑥  ∈  { 𝐸 } ,  𝑦  ∈  { 𝐸 }  ↦  if ( 𝑥  =  𝑦 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 18 |  | eqeq1 | ⊢ ( 𝑥  =  𝐸  →  ( 𝑥  =  𝑦  ↔  𝐸  =  𝑦 ) ) | 
						
							| 19 | 18 | ifbid | ⊢ ( 𝑥  =  𝐸  →  if ( 𝑥  =  𝑦 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) )  =  if ( 𝐸  =  𝑦 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 20 |  | eqeq2 | ⊢ ( 𝑦  =  𝐸  →  ( 𝐸  =  𝑦  ↔  𝐸  =  𝐸 ) ) | 
						
							| 21 | 20 | ifbid | ⊢ ( 𝑦  =  𝐸  →  if ( 𝐸  =  𝑦 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) )  =  if ( 𝐸  =  𝐸 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 22 | 17 19 21 | mposn | ⊢ ( ( 𝐸  ∈  𝑉  ∧  𝐸  ∈  𝑉  ∧  if ( 𝐸  =  𝐸 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) )  ∈  V )  →  ( 𝑥  ∈  { 𝐸 } ,  𝑦  ∈  { 𝐸 }  ↦  if ( 𝑥  =  𝑦 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) )  =  { 〈 〈 𝐸 ,  𝐸 〉 ,  if ( 𝐸  =  𝐸 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) 〉 } ) | 
						
							| 23 | 12 12 16 22 | syl3anc | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  ( 𝑥  ∈  { 𝐸 } ,  𝑦  ∈  { 𝐸 }  ↦  if ( 𝑥  =  𝑦 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) )  =  { 〈 〈 𝐸 ,  𝐸 〉 ,  if ( 𝐸  =  𝐸 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) 〉 } ) | 
						
							| 24 |  | eqid | ⊢ 𝐸  =  𝐸 | 
						
							| 25 | 24 | iftruei | ⊢ if ( 𝐸  =  𝐸 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) )  =  ( 1r ‘ 𝑅 ) | 
						
							| 26 | 25 | opeq2i | ⊢ 〈 〈 𝐸 ,  𝐸 〉 ,  if ( 𝐸  =  𝐸 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) 〉  =  〈 〈 𝐸 ,  𝐸 〉 ,  ( 1r ‘ 𝑅 ) 〉 | 
						
							| 27 | 26 | sneqi | ⊢ { 〈 〈 𝐸 ,  𝐸 〉 ,  if ( 𝐸  =  𝐸 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) 〉 }  =  { 〈 〈 𝐸 ,  𝐸 〉 ,  ( 1r ‘ 𝑅 ) 〉 } | 
						
							| 28 | 23 27 | eqtrdi | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  ( 𝑥  ∈  { 𝐸 } ,  𝑦  ∈  { 𝐸 }  ↦  if ( 𝑥  =  𝑦 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) )  =  { 〈 〈 𝐸 ,  𝐸 〉 ,  ( 1r ‘ 𝑅 ) 〉 } ) | 
						
							| 29 | 3 | opeq1i | ⊢ 〈 𝑂 ,  ( 1r ‘ 𝑅 ) 〉  =  〈 〈 𝐸 ,  𝐸 〉 ,  ( 1r ‘ 𝑅 ) 〉 | 
						
							| 30 | 29 | sneqi | ⊢ { 〈 𝑂 ,  ( 1r ‘ 𝑅 ) 〉 }  =  { 〈 〈 𝐸 ,  𝐸 〉 ,  ( 1r ‘ 𝑅 ) 〉 } | 
						
							| 31 | 28 30 | eqtr4di | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  ( 𝑥  ∈  { 𝐸 } ,  𝑦  ∈  { 𝐸 }  ↦  if ( 𝑥  =  𝑦 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) )  =  { 〈 𝑂 ,  ( 1r ‘ 𝑅 ) 〉 } ) | 
						
							| 32 | 11 31 | eqtrd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  ( 1r ‘ 𝐴 )  =  { 〈 𝑂 ,  ( 1r ‘ 𝑅 ) 〉 } ) |