Step |
Hyp |
Ref |
Expression |
1 |
|
mat1dim.a |
⊢ 𝐴 = ( { 𝐸 } Mat 𝑅 ) |
2 |
|
mat1dim.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
mat1dim.o |
⊢ 𝑂 = 〈 𝐸 , 𝐸 〉 |
4 |
|
opex |
⊢ 〈 𝐸 , 𝐸 〉 ∈ V |
5 |
3 4
|
eqeltri |
⊢ 𝑂 ∈ V |
6 |
5
|
a1i |
⊢ ( 𝑌 ∈ 𝐵 → 𝑂 ∈ V ) |
7 |
6
|
anim2i |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∈ 𝐵 ∧ 𝑂 ∈ V ) ) |
8 |
7
|
ancomd |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑂 ∈ V ∧ 𝑋 ∈ 𝐵 ) ) |
9 |
|
fnsng |
⊢ ( ( 𝑂 ∈ V ∧ 𝑋 ∈ 𝐵 ) → { 〈 𝑂 , 𝑋 〉 } Fn { 𝑂 } ) |
10 |
8 9
|
syl |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → { 〈 𝑂 , 𝑋 〉 } Fn { 𝑂 } ) |
11 |
10
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → { 〈 𝑂 , 𝑋 〉 } Fn { 𝑂 } ) |
12 |
|
xpsng |
⊢ ( ( 𝑂 ∈ V ∧ 𝑋 ∈ 𝐵 ) → ( { 𝑂 } × { 𝑋 } ) = { 〈 𝑂 , 𝑋 〉 } ) |
13 |
8 12
|
syl |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( { 𝑂 } × { 𝑋 } ) = { 〈 𝑂 , 𝑋 〉 } ) |
14 |
13
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( { 𝑂 } × { 𝑋 } ) = { 〈 𝑂 , 𝑋 〉 } ) |
15 |
14
|
fneq1d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( { 𝑂 } × { 𝑋 } ) Fn { 𝑂 } ↔ { 〈 𝑂 , 𝑋 〉 } Fn { 𝑂 } ) ) |
16 |
11 15
|
mpbird |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( { 𝑂 } × { 𝑋 } ) Fn { 𝑂 } ) |
17 |
|
xpsng |
⊢ ( ( 𝐸 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ) → ( { 𝐸 } × { 𝐸 } ) = { 〈 𝐸 , 𝐸 〉 } ) |
18 |
3
|
sneqi |
⊢ { 𝑂 } = { 〈 𝐸 , 𝐸 〉 } |
19 |
17 18
|
eqtr4di |
⊢ ( ( 𝐸 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ) → ( { 𝐸 } × { 𝐸 } ) = { 𝑂 } ) |
20 |
19
|
anidms |
⊢ ( 𝐸 ∈ 𝑉 → ( { 𝐸 } × { 𝐸 } ) = { 𝑂 } ) |
21 |
20
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( { 𝐸 } × { 𝐸 } ) = { 𝑂 } ) |
22 |
21
|
xpeq1d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) = ( { 𝑂 } × { 𝑋 } ) ) |
23 |
22
|
fneq1d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) Fn { 𝑂 } ↔ ( { 𝑂 } × { 𝑋 } ) Fn { 𝑂 } ) ) |
24 |
16 23
|
mpbird |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) Fn { 𝑂 } ) |
25 |
5
|
a1i |
⊢ ( 𝑋 ∈ 𝐵 → 𝑂 ∈ V ) |
26 |
|
fnsng |
⊢ ( ( 𝑂 ∈ V ∧ 𝑌 ∈ 𝐵 ) → { 〈 𝑂 , 𝑌 〉 } Fn { 𝑂 } ) |
27 |
25 26
|
sylan |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → { 〈 𝑂 , 𝑌 〉 } Fn { 𝑂 } ) |
28 |
27
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → { 〈 𝑂 , 𝑌 〉 } Fn { 𝑂 } ) |
29 |
|
snex |
⊢ { 𝑂 } ∈ V |
30 |
29
|
a1i |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → { 𝑂 } ∈ V ) |
31 |
|
inidm |
⊢ ( { 𝑂 } ∩ { 𝑂 } ) = { 𝑂 } |
32 |
|
elsni |
⊢ ( 𝑥 ∈ { 𝑂 } → 𝑥 = 𝑂 ) |
33 |
|
fveq2 |
⊢ ( 𝑥 = 𝑂 → ( ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) ‘ 𝑥 ) = ( ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) ‘ 𝑂 ) ) |
34 |
17
|
anidms |
⊢ ( 𝐸 ∈ 𝑉 → ( { 𝐸 } × { 𝐸 } ) = { 〈 𝐸 , 𝐸 〉 } ) |
35 |
34
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( { 𝐸 } × { 𝐸 } ) = { 〈 𝐸 , 𝐸 〉 } ) |
36 |
35
|
xpeq1d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) = ( { 〈 𝐸 , 𝐸 〉 } × { 𝑋 } ) ) |
37 |
4
|
a1i |
⊢ ( 𝑌 ∈ 𝐵 → 〈 𝐸 , 𝐸 〉 ∈ V ) |
38 |
37
|
anim2i |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∈ 𝐵 ∧ 〈 𝐸 , 𝐸 〉 ∈ V ) ) |
39 |
38
|
ancomd |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 〈 𝐸 , 𝐸 〉 ∈ V ∧ 𝑋 ∈ 𝐵 ) ) |
40 |
|
xpsng |
⊢ ( ( 〈 𝐸 , 𝐸 〉 ∈ V ∧ 𝑋 ∈ 𝐵 ) → ( { 〈 𝐸 , 𝐸 〉 } × { 𝑋 } ) = { 〈 〈 𝐸 , 𝐸 〉 , 𝑋 〉 } ) |
41 |
3
|
eqcomi |
⊢ 〈 𝐸 , 𝐸 〉 = 𝑂 |
42 |
41
|
opeq1i |
⊢ 〈 〈 𝐸 , 𝐸 〉 , 𝑋 〉 = 〈 𝑂 , 𝑋 〉 |
43 |
42
|
sneqi |
⊢ { 〈 〈 𝐸 , 𝐸 〉 , 𝑋 〉 } = { 〈 𝑂 , 𝑋 〉 } |
44 |
40 43
|
eqtrdi |
⊢ ( ( 〈 𝐸 , 𝐸 〉 ∈ V ∧ 𝑋 ∈ 𝐵 ) → ( { 〈 𝐸 , 𝐸 〉 } × { 𝑋 } ) = { 〈 𝑂 , 𝑋 〉 } ) |
45 |
39 44
|
syl |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( { 〈 𝐸 , 𝐸 〉 } × { 𝑋 } ) = { 〈 𝑂 , 𝑋 〉 } ) |
46 |
45
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( { 〈 𝐸 , 𝐸 〉 } × { 𝑋 } ) = { 〈 𝑂 , 𝑋 〉 } ) |
47 |
36 46
|
eqtrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) = { 〈 𝑂 , 𝑋 〉 } ) |
48 |
47
|
fveq1d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) ‘ 𝑂 ) = ( { 〈 𝑂 , 𝑋 〉 } ‘ 𝑂 ) ) |
49 |
|
fvsng |
⊢ ( ( 𝑂 ∈ V ∧ 𝑋 ∈ 𝐵 ) → ( { 〈 𝑂 , 𝑋 〉 } ‘ 𝑂 ) = 𝑋 ) |
50 |
8 49
|
syl |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( { 〈 𝑂 , 𝑋 〉 } ‘ 𝑂 ) = 𝑋 ) |
51 |
50
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( { 〈 𝑂 , 𝑋 〉 } ‘ 𝑂 ) = 𝑋 ) |
52 |
48 51
|
eqtrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) ‘ 𝑂 ) = 𝑋 ) |
53 |
33 52
|
sylan9eq |
⊢ ( ( 𝑥 = 𝑂 ∧ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ) → ( ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) ‘ 𝑥 ) = 𝑋 ) |
54 |
53
|
ex |
⊢ ( 𝑥 = 𝑂 → ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) ‘ 𝑥 ) = 𝑋 ) ) |
55 |
32 54
|
syl |
⊢ ( 𝑥 ∈ { 𝑂 } → ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) ‘ 𝑥 ) = 𝑋 ) ) |
56 |
55
|
impcom |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑥 ∈ { 𝑂 } ) → ( ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) ‘ 𝑥 ) = 𝑋 ) |
57 |
|
fveq2 |
⊢ ( 𝑥 = 𝑂 → ( { 〈 𝑂 , 𝑌 〉 } ‘ 𝑥 ) = ( { 〈 𝑂 , 𝑌 〉 } ‘ 𝑂 ) ) |
58 |
|
fvsng |
⊢ ( ( 𝑂 ∈ V ∧ 𝑌 ∈ 𝐵 ) → ( { 〈 𝑂 , 𝑌 〉 } ‘ 𝑂 ) = 𝑌 ) |
59 |
25 58
|
sylan |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( { 〈 𝑂 , 𝑌 〉 } ‘ 𝑂 ) = 𝑌 ) |
60 |
59
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( { 〈 𝑂 , 𝑌 〉 } ‘ 𝑂 ) = 𝑌 ) |
61 |
57 60
|
sylan9eq |
⊢ ( ( 𝑥 = 𝑂 ∧ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ) → ( { 〈 𝑂 , 𝑌 〉 } ‘ 𝑥 ) = 𝑌 ) |
62 |
61
|
ex |
⊢ ( 𝑥 = 𝑂 → ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( { 〈 𝑂 , 𝑌 〉 } ‘ 𝑥 ) = 𝑌 ) ) |
63 |
32 62
|
syl |
⊢ ( 𝑥 ∈ { 𝑂 } → ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( { 〈 𝑂 , 𝑌 〉 } ‘ 𝑥 ) = 𝑌 ) ) |
64 |
63
|
impcom |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑥 ∈ { 𝑂 } ) → ( { 〈 𝑂 , 𝑌 〉 } ‘ 𝑥 ) = 𝑌 ) |
65 |
24 28 30 30 31 56 64
|
offval |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) { 〈 𝑂 , 𝑌 〉 } ) = ( 𝑥 ∈ { 𝑂 } ↦ ( 𝑋 ( .r ‘ 𝑅 ) 𝑌 ) ) ) |
66 |
|
simprl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
67 |
|
simpr |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) |
68 |
67
|
anim2i |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ 𝑌 ∈ 𝐵 ) ) |
69 |
|
df-3an |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑌 ∈ 𝐵 ) ↔ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ 𝑌 ∈ 𝐵 ) ) |
70 |
68 69
|
sylibr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑌 ∈ 𝐵 ) ) |
71 |
1 2 3
|
mat1dimbas |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑌 ∈ 𝐵 ) → { 〈 𝑂 , 𝑌 〉 } ∈ ( Base ‘ 𝐴 ) ) |
72 |
70 71
|
syl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → { 〈 𝑂 , 𝑌 〉 } ∈ ( Base ‘ 𝐴 ) ) |
73 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
74 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐴 ) = ( ·𝑠 ‘ 𝐴 ) |
75 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
76 |
|
eqid |
⊢ ( { 𝐸 } × { 𝐸 } ) = ( { 𝐸 } × { 𝐸 } ) |
77 |
1 73 2 74 75 76
|
matvsca2 |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ { 〈 𝑂 , 𝑌 〉 } ∈ ( Base ‘ 𝐴 ) ) → ( 𝑋 ( ·𝑠 ‘ 𝐴 ) { 〈 𝑂 , 𝑌 〉 } ) = ( ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) { 〈 𝑂 , 𝑌 〉 } ) ) |
78 |
66 72 77
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( ·𝑠 ‘ 𝐴 ) { 〈 𝑂 , 𝑌 〉 } ) = ( ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) { 〈 𝑂 , 𝑌 〉 } ) ) |
79 |
|
3anass |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ↔ ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ) |
80 |
79
|
biimpri |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |
81 |
80
|
adantlr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |
82 |
2 75
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( .r ‘ 𝑅 ) 𝑌 ) ∈ 𝐵 ) |
83 |
81 82
|
syl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( .r ‘ 𝑅 ) 𝑌 ) ∈ 𝐵 ) |
84 |
|
fmptsn |
⊢ ( ( 𝑂 ∈ V ∧ ( 𝑋 ( .r ‘ 𝑅 ) 𝑌 ) ∈ 𝐵 ) → { 〈 𝑂 , ( 𝑋 ( .r ‘ 𝑅 ) 𝑌 ) 〉 } = ( 𝑥 ∈ { 𝑂 } ↦ ( 𝑋 ( .r ‘ 𝑅 ) 𝑌 ) ) ) |
85 |
5 83 84
|
sylancr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → { 〈 𝑂 , ( 𝑋 ( .r ‘ 𝑅 ) 𝑌 ) 〉 } = ( 𝑥 ∈ { 𝑂 } ↦ ( 𝑋 ( .r ‘ 𝑅 ) 𝑌 ) ) ) |
86 |
65 78 85
|
3eqtr4d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( ·𝑠 ‘ 𝐴 ) { 〈 𝑂 , 𝑌 〉 } ) = { 〈 𝑂 , ( 𝑋 ( .r ‘ 𝑅 ) 𝑌 ) 〉 } ) |