| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mat1dim.a | ⊢ 𝐴  =  ( { 𝐸 }  Mat  𝑅 ) | 
						
							| 2 |  | mat1dim.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 3 |  | mat1dim.o | ⊢ 𝑂  =  〈 𝐸 ,  𝐸 〉 | 
						
							| 4 |  | opex | ⊢ 〈 𝐸 ,  𝐸 〉  ∈  V | 
						
							| 5 | 3 4 | eqeltri | ⊢ 𝑂  ∈  V | 
						
							| 6 | 5 | a1i | ⊢ ( 𝑌  ∈  𝐵  →  𝑂  ∈  V ) | 
						
							| 7 | 6 | anim2i | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ∈  𝐵  ∧  𝑂  ∈  V ) ) | 
						
							| 8 | 7 | ancomd | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑂  ∈  V  ∧  𝑋  ∈  𝐵 ) ) | 
						
							| 9 |  | fnsng | ⊢ ( ( 𝑂  ∈  V  ∧  𝑋  ∈  𝐵 )  →  { 〈 𝑂 ,  𝑋 〉 }  Fn  { 𝑂 } ) | 
						
							| 10 | 8 9 | syl | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  { 〈 𝑂 ,  𝑋 〉 }  Fn  { 𝑂 } ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  { 〈 𝑂 ,  𝑋 〉 }  Fn  { 𝑂 } ) | 
						
							| 12 |  | xpsng | ⊢ ( ( 𝑂  ∈  V  ∧  𝑋  ∈  𝐵 )  →  ( { 𝑂 }  ×  { 𝑋 } )  =  { 〈 𝑂 ,  𝑋 〉 } ) | 
						
							| 13 | 8 12 | syl | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( { 𝑂 }  ×  { 𝑋 } )  =  { 〈 𝑂 ,  𝑋 〉 } ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( { 𝑂 }  ×  { 𝑋 } )  =  { 〈 𝑂 ,  𝑋 〉 } ) | 
						
							| 15 | 14 | fneq1d | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( { 𝑂 }  ×  { 𝑋 } )  Fn  { 𝑂 }  ↔  { 〈 𝑂 ,  𝑋 〉 }  Fn  { 𝑂 } ) ) | 
						
							| 16 | 11 15 | mpbird | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( { 𝑂 }  ×  { 𝑋 } )  Fn  { 𝑂 } ) | 
						
							| 17 |  | xpsng | ⊢ ( ( 𝐸  ∈  𝑉  ∧  𝐸  ∈  𝑉 )  →  ( { 𝐸 }  ×  { 𝐸 } )  =  { 〈 𝐸 ,  𝐸 〉 } ) | 
						
							| 18 | 3 | sneqi | ⊢ { 𝑂 }  =  { 〈 𝐸 ,  𝐸 〉 } | 
						
							| 19 | 17 18 | eqtr4di | ⊢ ( ( 𝐸  ∈  𝑉  ∧  𝐸  ∈  𝑉 )  →  ( { 𝐸 }  ×  { 𝐸 } )  =  { 𝑂 } ) | 
						
							| 20 | 19 | anidms | ⊢ ( 𝐸  ∈  𝑉  →  ( { 𝐸 }  ×  { 𝐸 } )  =  { 𝑂 } ) | 
						
							| 21 | 20 | ad2antlr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( { 𝐸 }  ×  { 𝐸 } )  =  { 𝑂 } ) | 
						
							| 22 | 21 | xpeq1d | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( { 𝐸 }  ×  { 𝐸 } )  ×  { 𝑋 } )  =  ( { 𝑂 }  ×  { 𝑋 } ) ) | 
						
							| 23 | 22 | fneq1d | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( ( { 𝐸 }  ×  { 𝐸 } )  ×  { 𝑋 } )  Fn  { 𝑂 }  ↔  ( { 𝑂 }  ×  { 𝑋 } )  Fn  { 𝑂 } ) ) | 
						
							| 24 | 16 23 | mpbird | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( { 𝐸 }  ×  { 𝐸 } )  ×  { 𝑋 } )  Fn  { 𝑂 } ) | 
						
							| 25 | 5 | a1i | ⊢ ( 𝑋  ∈  𝐵  →  𝑂  ∈  V ) | 
						
							| 26 |  | fnsng | ⊢ ( ( 𝑂  ∈  V  ∧  𝑌  ∈  𝐵 )  →  { 〈 𝑂 ,  𝑌 〉 }  Fn  { 𝑂 } ) | 
						
							| 27 | 25 26 | sylan | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  { 〈 𝑂 ,  𝑌 〉 }  Fn  { 𝑂 } ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  { 〈 𝑂 ,  𝑌 〉 }  Fn  { 𝑂 } ) | 
						
							| 29 |  | snex | ⊢ { 𝑂 }  ∈  V | 
						
							| 30 | 29 | a1i | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  { 𝑂 }  ∈  V ) | 
						
							| 31 |  | inidm | ⊢ ( { 𝑂 }  ∩  { 𝑂 } )  =  { 𝑂 } | 
						
							| 32 |  | elsni | ⊢ ( 𝑥  ∈  { 𝑂 }  →  𝑥  =  𝑂 ) | 
						
							| 33 |  | fveq2 | ⊢ ( 𝑥  =  𝑂  →  ( ( ( { 𝐸 }  ×  { 𝐸 } )  ×  { 𝑋 } ) ‘ 𝑥 )  =  ( ( ( { 𝐸 }  ×  { 𝐸 } )  ×  { 𝑋 } ) ‘ 𝑂 ) ) | 
						
							| 34 | 17 | anidms | ⊢ ( 𝐸  ∈  𝑉  →  ( { 𝐸 }  ×  { 𝐸 } )  =  { 〈 𝐸 ,  𝐸 〉 } ) | 
						
							| 35 | 34 | ad2antlr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( { 𝐸 }  ×  { 𝐸 } )  =  { 〈 𝐸 ,  𝐸 〉 } ) | 
						
							| 36 | 35 | xpeq1d | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( { 𝐸 }  ×  { 𝐸 } )  ×  { 𝑋 } )  =  ( { 〈 𝐸 ,  𝐸 〉 }  ×  { 𝑋 } ) ) | 
						
							| 37 | 4 | a1i | ⊢ ( 𝑌  ∈  𝐵  →  〈 𝐸 ,  𝐸 〉  ∈  V ) | 
						
							| 38 | 37 | anim2i | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ∈  𝐵  ∧  〈 𝐸 ,  𝐸 〉  ∈  V ) ) | 
						
							| 39 | 38 | ancomd | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 〈 𝐸 ,  𝐸 〉  ∈  V  ∧  𝑋  ∈  𝐵 ) ) | 
						
							| 40 |  | xpsng | ⊢ ( ( 〈 𝐸 ,  𝐸 〉  ∈  V  ∧  𝑋  ∈  𝐵 )  →  ( { 〈 𝐸 ,  𝐸 〉 }  ×  { 𝑋 } )  =  { 〈 〈 𝐸 ,  𝐸 〉 ,  𝑋 〉 } ) | 
						
							| 41 | 3 | eqcomi | ⊢ 〈 𝐸 ,  𝐸 〉  =  𝑂 | 
						
							| 42 | 41 | opeq1i | ⊢ 〈 〈 𝐸 ,  𝐸 〉 ,  𝑋 〉  =  〈 𝑂 ,  𝑋 〉 | 
						
							| 43 | 42 | sneqi | ⊢ { 〈 〈 𝐸 ,  𝐸 〉 ,  𝑋 〉 }  =  { 〈 𝑂 ,  𝑋 〉 } | 
						
							| 44 | 40 43 | eqtrdi | ⊢ ( ( 〈 𝐸 ,  𝐸 〉  ∈  V  ∧  𝑋  ∈  𝐵 )  →  ( { 〈 𝐸 ,  𝐸 〉 }  ×  { 𝑋 } )  =  { 〈 𝑂 ,  𝑋 〉 } ) | 
						
							| 45 | 39 44 | syl | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( { 〈 𝐸 ,  𝐸 〉 }  ×  { 𝑋 } )  =  { 〈 𝑂 ,  𝑋 〉 } ) | 
						
							| 46 | 45 | adantl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( { 〈 𝐸 ,  𝐸 〉 }  ×  { 𝑋 } )  =  { 〈 𝑂 ,  𝑋 〉 } ) | 
						
							| 47 | 36 46 | eqtrd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( { 𝐸 }  ×  { 𝐸 } )  ×  { 𝑋 } )  =  { 〈 𝑂 ,  𝑋 〉 } ) | 
						
							| 48 | 47 | fveq1d | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( ( { 𝐸 }  ×  { 𝐸 } )  ×  { 𝑋 } ) ‘ 𝑂 )  =  ( { 〈 𝑂 ,  𝑋 〉 } ‘ 𝑂 ) ) | 
						
							| 49 |  | fvsng | ⊢ ( ( 𝑂  ∈  V  ∧  𝑋  ∈  𝐵 )  →  ( { 〈 𝑂 ,  𝑋 〉 } ‘ 𝑂 )  =  𝑋 ) | 
						
							| 50 | 8 49 | syl | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( { 〈 𝑂 ,  𝑋 〉 } ‘ 𝑂 )  =  𝑋 ) | 
						
							| 51 | 50 | adantl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( { 〈 𝑂 ,  𝑋 〉 } ‘ 𝑂 )  =  𝑋 ) | 
						
							| 52 | 48 51 | eqtrd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( ( { 𝐸 }  ×  { 𝐸 } )  ×  { 𝑋 } ) ‘ 𝑂 )  =  𝑋 ) | 
						
							| 53 | 33 52 | sylan9eq | ⊢ ( ( 𝑥  =  𝑂  ∧  ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) ) )  →  ( ( ( { 𝐸 }  ×  { 𝐸 } )  ×  { 𝑋 } ) ‘ 𝑥 )  =  𝑋 ) | 
						
							| 54 | 53 | ex | ⊢ ( 𝑥  =  𝑂  →  ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( ( { 𝐸 }  ×  { 𝐸 } )  ×  { 𝑋 } ) ‘ 𝑥 )  =  𝑋 ) ) | 
						
							| 55 | 32 54 | syl | ⊢ ( 𝑥  ∈  { 𝑂 }  →  ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( ( { 𝐸 }  ×  { 𝐸 } )  ×  { 𝑋 } ) ‘ 𝑥 )  =  𝑋 ) ) | 
						
							| 56 | 55 | impcom | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑥  ∈  { 𝑂 } )  →  ( ( ( { 𝐸 }  ×  { 𝐸 } )  ×  { 𝑋 } ) ‘ 𝑥 )  =  𝑋 ) | 
						
							| 57 |  | fveq2 | ⊢ ( 𝑥  =  𝑂  →  ( { 〈 𝑂 ,  𝑌 〉 } ‘ 𝑥 )  =  ( { 〈 𝑂 ,  𝑌 〉 } ‘ 𝑂 ) ) | 
						
							| 58 |  | fvsng | ⊢ ( ( 𝑂  ∈  V  ∧  𝑌  ∈  𝐵 )  →  ( { 〈 𝑂 ,  𝑌 〉 } ‘ 𝑂 )  =  𝑌 ) | 
						
							| 59 | 25 58 | sylan | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( { 〈 𝑂 ,  𝑌 〉 } ‘ 𝑂 )  =  𝑌 ) | 
						
							| 60 | 59 | adantl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( { 〈 𝑂 ,  𝑌 〉 } ‘ 𝑂 )  =  𝑌 ) | 
						
							| 61 | 57 60 | sylan9eq | ⊢ ( ( 𝑥  =  𝑂  ∧  ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) ) )  →  ( { 〈 𝑂 ,  𝑌 〉 } ‘ 𝑥 )  =  𝑌 ) | 
						
							| 62 | 61 | ex | ⊢ ( 𝑥  =  𝑂  →  ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( { 〈 𝑂 ,  𝑌 〉 } ‘ 𝑥 )  =  𝑌 ) ) | 
						
							| 63 | 32 62 | syl | ⊢ ( 𝑥  ∈  { 𝑂 }  →  ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( { 〈 𝑂 ,  𝑌 〉 } ‘ 𝑥 )  =  𝑌 ) ) | 
						
							| 64 | 63 | impcom | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑥  ∈  { 𝑂 } )  →  ( { 〈 𝑂 ,  𝑌 〉 } ‘ 𝑥 )  =  𝑌 ) | 
						
							| 65 | 24 28 30 30 31 56 64 | offval | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( ( { 𝐸 }  ×  { 𝐸 } )  ×  { 𝑋 } )  ∘f  ( .r ‘ 𝑅 ) { 〈 𝑂 ,  𝑌 〉 } )  =  ( 𝑥  ∈  { 𝑂 }  ↦  ( 𝑋 ( .r ‘ 𝑅 ) 𝑌 ) ) ) | 
						
							| 66 |  | simprl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 67 |  | simpr | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑌  ∈  𝐵 ) | 
						
							| 68 | 67 | anim2i | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  𝑌  ∈  𝐵 ) ) | 
						
							| 69 |  | df-3an | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉  ∧  𝑌  ∈  𝐵 )  ↔  ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  𝑌  ∈  𝐵 ) ) | 
						
							| 70 | 68 69 | sylibr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉  ∧  𝑌  ∈  𝐵 ) ) | 
						
							| 71 | 1 2 3 | mat1dimbas | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉  ∧  𝑌  ∈  𝐵 )  →  { 〈 𝑂 ,  𝑌 〉 }  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 72 | 70 71 | syl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  { 〈 𝑂 ,  𝑌 〉 }  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 73 |  | eqid | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 ) | 
						
							| 74 |  | eqid | ⊢ (  ·𝑠  ‘ 𝐴 )  =  (  ·𝑠  ‘ 𝐴 ) | 
						
							| 75 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 76 |  | eqid | ⊢ ( { 𝐸 }  ×  { 𝐸 } )  =  ( { 𝐸 }  ×  { 𝐸 } ) | 
						
							| 77 | 1 73 2 74 75 76 | matvsca2 | ⊢ ( ( 𝑋  ∈  𝐵  ∧  { 〈 𝑂 ,  𝑌 〉 }  ∈  ( Base ‘ 𝐴 ) )  →  ( 𝑋 (  ·𝑠  ‘ 𝐴 ) { 〈 𝑂 ,  𝑌 〉 } )  =  ( ( ( { 𝐸 }  ×  { 𝐸 } )  ×  { 𝑋 } )  ∘f  ( .r ‘ 𝑅 ) { 〈 𝑂 ,  𝑌 〉 } ) ) | 
						
							| 78 | 66 72 77 | syl2anc | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋 (  ·𝑠  ‘ 𝐴 ) { 〈 𝑂 ,  𝑌 〉 } )  =  ( ( ( { 𝐸 }  ×  { 𝐸 } )  ×  { 𝑋 } )  ∘f  ( .r ‘ 𝑅 ) { 〈 𝑂 ,  𝑌 〉 } ) ) | 
						
							| 79 |  | 3anass | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ↔  ( 𝑅  ∈  Ring  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) ) ) | 
						
							| 80 | 79 | biimpri | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) ) | 
						
							| 81 | 80 | adantlr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) ) | 
						
							| 82 | 2 75 | ringcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋 ( .r ‘ 𝑅 ) 𝑌 )  ∈  𝐵 ) | 
						
							| 83 | 81 82 | syl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋 ( .r ‘ 𝑅 ) 𝑌 )  ∈  𝐵 ) | 
						
							| 84 |  | fmptsn | ⊢ ( ( 𝑂  ∈  V  ∧  ( 𝑋 ( .r ‘ 𝑅 ) 𝑌 )  ∈  𝐵 )  →  { 〈 𝑂 ,  ( 𝑋 ( .r ‘ 𝑅 ) 𝑌 ) 〉 }  =  ( 𝑥  ∈  { 𝑂 }  ↦  ( 𝑋 ( .r ‘ 𝑅 ) 𝑌 ) ) ) | 
						
							| 85 | 5 83 84 | sylancr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  { 〈 𝑂 ,  ( 𝑋 ( .r ‘ 𝑅 ) 𝑌 ) 〉 }  =  ( 𝑥  ∈  { 𝑂 }  ↦  ( 𝑋 ( .r ‘ 𝑅 ) 𝑌 ) ) ) | 
						
							| 86 | 65 78 85 | 3eqtr4d | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋 (  ·𝑠  ‘ 𝐴 ) { 〈 𝑂 ,  𝑌 〉 } )  =  { 〈 𝑂 ,  ( 𝑋 ( .r ‘ 𝑅 ) 𝑌 ) 〉 } ) |