Metamath Proof Explorer


Theorem mat1dimscm

Description: The scalar multiplication in the algebra of matrices with dimension 1. (Contributed by AV, 16-Aug-2019)

Ref Expression
Hypotheses mat1dim.a 𝐴 = ( { 𝐸 } Mat 𝑅 )
mat1dim.b 𝐵 = ( Base ‘ 𝑅 )
mat1dim.o 𝑂 = ⟨ 𝐸 , 𝐸
Assertion mat1dimscm ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( 𝑋 ( ·𝑠𝐴 ) { ⟨ 𝑂 , 𝑌 ⟩ } ) = { ⟨ 𝑂 , ( 𝑋 ( .r𝑅 ) 𝑌 ) ⟩ } )

Proof

Step Hyp Ref Expression
1 mat1dim.a 𝐴 = ( { 𝐸 } Mat 𝑅 )
2 mat1dim.b 𝐵 = ( Base ‘ 𝑅 )
3 mat1dim.o 𝑂 = ⟨ 𝐸 , 𝐸
4 opex 𝐸 , 𝐸 ⟩ ∈ V
5 3 4 eqeltri 𝑂 ∈ V
6 5 a1i ( 𝑌𝐵𝑂 ∈ V )
7 6 anim2i ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑋𝐵𝑂 ∈ V ) )
8 7 ancomd ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑂 ∈ V ∧ 𝑋𝐵 ) )
9 fnsng ( ( 𝑂 ∈ V ∧ 𝑋𝐵 ) → { ⟨ 𝑂 , 𝑋 ⟩ } Fn { 𝑂 } )
10 8 9 syl ( ( 𝑋𝐵𝑌𝐵 ) → { ⟨ 𝑂 , 𝑋 ⟩ } Fn { 𝑂 } )
11 10 adantl ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → { ⟨ 𝑂 , 𝑋 ⟩ } Fn { 𝑂 } )
12 xpsng ( ( 𝑂 ∈ V ∧ 𝑋𝐵 ) → ( { 𝑂 } × { 𝑋 } ) = { ⟨ 𝑂 , 𝑋 ⟩ } )
13 8 12 syl ( ( 𝑋𝐵𝑌𝐵 ) → ( { 𝑂 } × { 𝑋 } ) = { ⟨ 𝑂 , 𝑋 ⟩ } )
14 13 adantl ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( { 𝑂 } × { 𝑋 } ) = { ⟨ 𝑂 , 𝑋 ⟩ } )
15 14 fneq1d ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( ( { 𝑂 } × { 𝑋 } ) Fn { 𝑂 } ↔ { ⟨ 𝑂 , 𝑋 ⟩ } Fn { 𝑂 } ) )
16 11 15 mpbird ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( { 𝑂 } × { 𝑋 } ) Fn { 𝑂 } )
17 xpsng ( ( 𝐸𝑉𝐸𝑉 ) → ( { 𝐸 } × { 𝐸 } ) = { ⟨ 𝐸 , 𝐸 ⟩ } )
18 3 sneqi { 𝑂 } = { ⟨ 𝐸 , 𝐸 ⟩ }
19 17 18 eqtr4di ( ( 𝐸𝑉𝐸𝑉 ) → ( { 𝐸 } × { 𝐸 } ) = { 𝑂 } )
20 19 anidms ( 𝐸𝑉 → ( { 𝐸 } × { 𝐸 } ) = { 𝑂 } )
21 20 ad2antlr ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( { 𝐸 } × { 𝐸 } ) = { 𝑂 } )
22 21 xpeq1d ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) = ( { 𝑂 } × { 𝑋 } ) )
23 22 fneq1d ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) Fn { 𝑂 } ↔ ( { 𝑂 } × { 𝑋 } ) Fn { 𝑂 } ) )
24 16 23 mpbird ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) Fn { 𝑂 } )
25 5 a1i ( 𝑋𝐵𝑂 ∈ V )
26 fnsng ( ( 𝑂 ∈ V ∧ 𝑌𝐵 ) → { ⟨ 𝑂 , 𝑌 ⟩ } Fn { 𝑂 } )
27 25 26 sylan ( ( 𝑋𝐵𝑌𝐵 ) → { ⟨ 𝑂 , 𝑌 ⟩ } Fn { 𝑂 } )
28 27 adantl ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → { ⟨ 𝑂 , 𝑌 ⟩ } Fn { 𝑂 } )
29 snex { 𝑂 } ∈ V
30 29 a1i ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → { 𝑂 } ∈ V )
31 inidm ( { 𝑂 } ∩ { 𝑂 } ) = { 𝑂 }
32 elsni ( 𝑥 ∈ { 𝑂 } → 𝑥 = 𝑂 )
33 fveq2 ( 𝑥 = 𝑂 → ( ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) ‘ 𝑥 ) = ( ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) ‘ 𝑂 ) )
34 17 anidms ( 𝐸𝑉 → ( { 𝐸 } × { 𝐸 } ) = { ⟨ 𝐸 , 𝐸 ⟩ } )
35 34 ad2antlr ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( { 𝐸 } × { 𝐸 } ) = { ⟨ 𝐸 , 𝐸 ⟩ } )
36 35 xpeq1d ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) = ( { ⟨ 𝐸 , 𝐸 ⟩ } × { 𝑋 } ) )
37 4 a1i ( 𝑌𝐵 → ⟨ 𝐸 , 𝐸 ⟩ ∈ V )
38 37 anim2i ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑋𝐵 ∧ ⟨ 𝐸 , 𝐸 ⟩ ∈ V ) )
39 38 ancomd ( ( 𝑋𝐵𝑌𝐵 ) → ( ⟨ 𝐸 , 𝐸 ⟩ ∈ V ∧ 𝑋𝐵 ) )
40 xpsng ( ( ⟨ 𝐸 , 𝐸 ⟩ ∈ V ∧ 𝑋𝐵 ) → ( { ⟨ 𝐸 , 𝐸 ⟩ } × { 𝑋 } ) = { ⟨ ⟨ 𝐸 , 𝐸 ⟩ , 𝑋 ⟩ } )
41 3 eqcomi 𝐸 , 𝐸 ⟩ = 𝑂
42 41 opeq1i ⟨ ⟨ 𝐸 , 𝐸 ⟩ , 𝑋 ⟩ = ⟨ 𝑂 , 𝑋
43 42 sneqi { ⟨ ⟨ 𝐸 , 𝐸 ⟩ , 𝑋 ⟩ } = { ⟨ 𝑂 , 𝑋 ⟩ }
44 40 43 eqtrdi ( ( ⟨ 𝐸 , 𝐸 ⟩ ∈ V ∧ 𝑋𝐵 ) → ( { ⟨ 𝐸 , 𝐸 ⟩ } × { 𝑋 } ) = { ⟨ 𝑂 , 𝑋 ⟩ } )
45 39 44 syl ( ( 𝑋𝐵𝑌𝐵 ) → ( { ⟨ 𝐸 , 𝐸 ⟩ } × { 𝑋 } ) = { ⟨ 𝑂 , 𝑋 ⟩ } )
46 45 adantl ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( { ⟨ 𝐸 , 𝐸 ⟩ } × { 𝑋 } ) = { ⟨ 𝑂 , 𝑋 ⟩ } )
47 36 46 eqtrd ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) = { ⟨ 𝑂 , 𝑋 ⟩ } )
48 47 fveq1d ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) ‘ 𝑂 ) = ( { ⟨ 𝑂 , 𝑋 ⟩ } ‘ 𝑂 ) )
49 fvsng ( ( 𝑂 ∈ V ∧ 𝑋𝐵 ) → ( { ⟨ 𝑂 , 𝑋 ⟩ } ‘ 𝑂 ) = 𝑋 )
50 8 49 syl ( ( 𝑋𝐵𝑌𝐵 ) → ( { ⟨ 𝑂 , 𝑋 ⟩ } ‘ 𝑂 ) = 𝑋 )
51 50 adantl ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( { ⟨ 𝑂 , 𝑋 ⟩ } ‘ 𝑂 ) = 𝑋 )
52 48 51 eqtrd ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) ‘ 𝑂 ) = 𝑋 )
53 33 52 sylan9eq ( ( 𝑥 = 𝑂 ∧ ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) ) → ( ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) ‘ 𝑥 ) = 𝑋 )
54 53 ex ( 𝑥 = 𝑂 → ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) ‘ 𝑥 ) = 𝑋 ) )
55 32 54 syl ( 𝑥 ∈ { 𝑂 } → ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) ‘ 𝑥 ) = 𝑋 ) )
56 55 impcom ( ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) ∧ 𝑥 ∈ { 𝑂 } ) → ( ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) ‘ 𝑥 ) = 𝑋 )
57 fveq2 ( 𝑥 = 𝑂 → ( { ⟨ 𝑂 , 𝑌 ⟩ } ‘ 𝑥 ) = ( { ⟨ 𝑂 , 𝑌 ⟩ } ‘ 𝑂 ) )
58 fvsng ( ( 𝑂 ∈ V ∧ 𝑌𝐵 ) → ( { ⟨ 𝑂 , 𝑌 ⟩ } ‘ 𝑂 ) = 𝑌 )
59 25 58 sylan ( ( 𝑋𝐵𝑌𝐵 ) → ( { ⟨ 𝑂 , 𝑌 ⟩ } ‘ 𝑂 ) = 𝑌 )
60 59 adantl ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( { ⟨ 𝑂 , 𝑌 ⟩ } ‘ 𝑂 ) = 𝑌 )
61 57 60 sylan9eq ( ( 𝑥 = 𝑂 ∧ ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) ) → ( { ⟨ 𝑂 , 𝑌 ⟩ } ‘ 𝑥 ) = 𝑌 )
62 61 ex ( 𝑥 = 𝑂 → ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( { ⟨ 𝑂 , 𝑌 ⟩ } ‘ 𝑥 ) = 𝑌 ) )
63 32 62 syl ( 𝑥 ∈ { 𝑂 } → ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( { ⟨ 𝑂 , 𝑌 ⟩ } ‘ 𝑥 ) = 𝑌 ) )
64 63 impcom ( ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) ∧ 𝑥 ∈ { 𝑂 } ) → ( { ⟨ 𝑂 , 𝑌 ⟩ } ‘ 𝑥 ) = 𝑌 )
65 24 28 30 30 31 56 64 offval ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) ∘f ( .r𝑅 ) { ⟨ 𝑂 , 𝑌 ⟩ } ) = ( 𝑥 ∈ { 𝑂 } ↦ ( 𝑋 ( .r𝑅 ) 𝑌 ) ) )
66 simprl ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → 𝑋𝐵 )
67 simpr ( ( 𝑋𝐵𝑌𝐵 ) → 𝑌𝐵 )
68 67 anim2i ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ 𝑌𝐵 ) )
69 df-3an ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉𝑌𝐵 ) ↔ ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ 𝑌𝐵 ) )
70 68 69 sylibr ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( 𝑅 ∈ Ring ∧ 𝐸𝑉𝑌𝐵 ) )
71 1 2 3 mat1dimbas ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉𝑌𝐵 ) → { ⟨ 𝑂 , 𝑌 ⟩ } ∈ ( Base ‘ 𝐴 ) )
72 70 71 syl ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → { ⟨ 𝑂 , 𝑌 ⟩ } ∈ ( Base ‘ 𝐴 ) )
73 eqid ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 )
74 eqid ( ·𝑠𝐴 ) = ( ·𝑠𝐴 )
75 eqid ( .r𝑅 ) = ( .r𝑅 )
76 eqid ( { 𝐸 } × { 𝐸 } ) = ( { 𝐸 } × { 𝐸 } )
77 1 73 2 74 75 76 matvsca2 ( ( 𝑋𝐵 ∧ { ⟨ 𝑂 , 𝑌 ⟩ } ∈ ( Base ‘ 𝐴 ) ) → ( 𝑋 ( ·𝑠𝐴 ) { ⟨ 𝑂 , 𝑌 ⟩ } ) = ( ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) ∘f ( .r𝑅 ) { ⟨ 𝑂 , 𝑌 ⟩ } ) )
78 66 72 77 syl2anc ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( 𝑋 ( ·𝑠𝐴 ) { ⟨ 𝑂 , 𝑌 ⟩ } ) = ( ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) ∘f ( .r𝑅 ) { ⟨ 𝑂 , 𝑌 ⟩ } ) )
79 3anass ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵 ) ↔ ( 𝑅 ∈ Ring ∧ ( 𝑋𝐵𝑌𝐵 ) ) )
80 79 biimpri ( ( 𝑅 ∈ Ring ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( 𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵 ) )
81 80 adantlr ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( 𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵 ) )
82 2 75 ringcl ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 ( .r𝑅 ) 𝑌 ) ∈ 𝐵 )
83 81 82 syl ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( 𝑋 ( .r𝑅 ) 𝑌 ) ∈ 𝐵 )
84 fmptsn ( ( 𝑂 ∈ V ∧ ( 𝑋 ( .r𝑅 ) 𝑌 ) ∈ 𝐵 ) → { ⟨ 𝑂 , ( 𝑋 ( .r𝑅 ) 𝑌 ) ⟩ } = ( 𝑥 ∈ { 𝑂 } ↦ ( 𝑋 ( .r𝑅 ) 𝑌 ) ) )
85 5 83 84 sylancr ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → { ⟨ 𝑂 , ( 𝑋 ( .r𝑅 ) 𝑌 ) ⟩ } = ( 𝑥 ∈ { 𝑂 } ↦ ( 𝑋 ( .r𝑅 ) 𝑌 ) ) )
86 65 78 85 3eqtr4d ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( 𝑋 ( ·𝑠𝐴 ) { ⟨ 𝑂 , 𝑌 ⟩ } ) = { ⟨ 𝑂 , ( 𝑋 ( .r𝑅 ) 𝑌 ) ⟩ } )