| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ex |  |-  (/) e. _V | 
						
							| 2 | 1 | snid |  |-  (/) e. { (/) } | 
						
							| 3 |  | mat0dimbas0 |  |-  ( R e. Ring -> ( Base ` ( (/) Mat R ) ) = { (/) } ) | 
						
							| 4 | 2 3 | eleqtrrid |  |-  ( R e. Ring -> (/) e. ( Base ` ( (/) Mat R ) ) ) | 
						
							| 5 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 6 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 7 | 5 6 | ringidcl |  |-  ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 8 |  | oveq1 |  |-  ( c = ( 1r ` R ) -> ( c ( .s ` ( (/) Mat R ) ) (/) ) = ( ( 1r ` R ) ( .s ` ( (/) Mat R ) ) (/) ) ) | 
						
							| 9 | 8 | eqeq2d |  |-  ( c = ( 1r ` R ) -> ( (/) = ( c ( .s ` ( (/) Mat R ) ) (/) ) <-> (/) = ( ( 1r ` R ) ( .s ` ( (/) Mat R ) ) (/) ) ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( R e. Ring /\ c = ( 1r ` R ) ) -> ( (/) = ( c ( .s ` ( (/) Mat R ) ) (/) ) <-> (/) = ( ( 1r ` R ) ( .s ` ( (/) Mat R ) ) (/) ) ) ) | 
						
							| 11 |  | eqid |  |-  ( (/) Mat R ) = ( (/) Mat R ) | 
						
							| 12 | 11 | mat0dimscm |  |-  ( ( R e. Ring /\ ( 1r ` R ) e. ( Base ` R ) ) -> ( ( 1r ` R ) ( .s ` ( (/) Mat R ) ) (/) ) = (/) ) | 
						
							| 13 | 7 12 | mpdan |  |-  ( R e. Ring -> ( ( 1r ` R ) ( .s ` ( (/) Mat R ) ) (/) ) = (/) ) | 
						
							| 14 | 13 | eqcomd |  |-  ( R e. Ring -> (/) = ( ( 1r ` R ) ( .s ` ( (/) Mat R ) ) (/) ) ) | 
						
							| 15 | 7 10 14 | rspcedvd |  |-  ( R e. Ring -> E. c e. ( Base ` R ) (/) = ( c ( .s ` ( (/) Mat R ) ) (/) ) ) | 
						
							| 16 | 11 | mat0dimid |  |-  ( R e. Ring -> ( 1r ` ( (/) Mat R ) ) = (/) ) | 
						
							| 17 | 16 | oveq2d |  |-  ( R e. Ring -> ( c ( .s ` ( (/) Mat R ) ) ( 1r ` ( (/) Mat R ) ) ) = ( c ( .s ` ( (/) Mat R ) ) (/) ) ) | 
						
							| 18 | 17 | eqeq2d |  |-  ( R e. Ring -> ( (/) = ( c ( .s ` ( (/) Mat R ) ) ( 1r ` ( (/) Mat R ) ) ) <-> (/) = ( c ( .s ` ( (/) Mat R ) ) (/) ) ) ) | 
						
							| 19 | 18 | rexbidv |  |-  ( R e. Ring -> ( E. c e. ( Base ` R ) (/) = ( c ( .s ` ( (/) Mat R ) ) ( 1r ` ( (/) Mat R ) ) ) <-> E. c e. ( Base ` R ) (/) = ( c ( .s ` ( (/) Mat R ) ) (/) ) ) ) | 
						
							| 20 | 15 19 | mpbird |  |-  ( R e. Ring -> E. c e. ( Base ` R ) (/) = ( c ( .s ` ( (/) Mat R ) ) ( 1r ` ( (/) Mat R ) ) ) ) | 
						
							| 21 |  | 0fi |  |-  (/) e. Fin | 
						
							| 22 |  | eqid |  |-  ( Base ` ( (/) Mat R ) ) = ( Base ` ( (/) Mat R ) ) | 
						
							| 23 |  | eqid |  |-  ( 1r ` ( (/) Mat R ) ) = ( 1r ` ( (/) Mat R ) ) | 
						
							| 24 |  | eqid |  |-  ( .s ` ( (/) Mat R ) ) = ( .s ` ( (/) Mat R ) ) | 
						
							| 25 |  | eqid |  |-  ( (/) ScMat R ) = ( (/) ScMat R ) | 
						
							| 26 | 5 11 22 23 24 25 | scmatel |  |-  ( ( (/) e. Fin /\ R e. Ring ) -> ( (/) e. ( (/) ScMat R ) <-> ( (/) e. ( Base ` ( (/) Mat R ) ) /\ E. c e. ( Base ` R ) (/) = ( c ( .s ` ( (/) Mat R ) ) ( 1r ` ( (/) Mat R ) ) ) ) ) ) | 
						
							| 27 | 21 26 | mpan |  |-  ( R e. Ring -> ( (/) e. ( (/) ScMat R ) <-> ( (/) e. ( Base ` ( (/) Mat R ) ) /\ E. c e. ( Base ` R ) (/) = ( c ( .s ` ( (/) Mat R ) ) ( 1r ` ( (/) Mat R ) ) ) ) ) ) | 
						
							| 28 | 4 20 27 | mpbir2and |  |-  ( R e. Ring -> (/) e. ( (/) ScMat R ) ) |