| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mat0dim.a |  |-  A = ( (/) Mat R ) | 
						
							| 2 |  | simpl |  |-  ( ( R e. Ring /\ X e. ( Base ` R ) ) -> R e. Ring ) | 
						
							| 3 |  | 0fi |  |-  (/) e. Fin | 
						
							| 4 | 1 | matlmod |  |-  ( ( (/) e. Fin /\ R e. Ring ) -> A e. LMod ) | 
						
							| 5 | 3 2 4 | sylancr |  |-  ( ( R e. Ring /\ X e. ( Base ` R ) ) -> A e. LMod ) | 
						
							| 6 | 1 | matsca2 |  |-  ( ( (/) e. Fin /\ R e. Ring ) -> R = ( Scalar ` A ) ) | 
						
							| 7 | 3 6 | mpan |  |-  ( R e. Ring -> R = ( Scalar ` A ) ) | 
						
							| 8 | 7 | fveq2d |  |-  ( R e. Ring -> ( Base ` R ) = ( Base ` ( Scalar ` A ) ) ) | 
						
							| 9 | 8 | eleq2d |  |-  ( R e. Ring -> ( X e. ( Base ` R ) <-> X e. ( Base ` ( Scalar ` A ) ) ) ) | 
						
							| 10 | 9 | biimpa |  |-  ( ( R e. Ring /\ X e. ( Base ` R ) ) -> X e. ( Base ` ( Scalar ` A ) ) ) | 
						
							| 11 |  | 0ex |  |-  (/) e. _V | 
						
							| 12 | 11 | snid |  |-  (/) e. { (/) } | 
						
							| 13 | 1 | fveq2i |  |-  ( Base ` A ) = ( Base ` ( (/) Mat R ) ) | 
						
							| 14 |  | mat0dimbas0 |  |-  ( R e. Ring -> ( Base ` ( (/) Mat R ) ) = { (/) } ) | 
						
							| 15 | 13 14 | eqtrid |  |-  ( R e. Ring -> ( Base ` A ) = { (/) } ) | 
						
							| 16 | 12 15 | eleqtrrid |  |-  ( R e. Ring -> (/) e. ( Base ` A ) ) | 
						
							| 17 | 16 | adantr |  |-  ( ( R e. Ring /\ X e. ( Base ` R ) ) -> (/) e. ( Base ` A ) ) | 
						
							| 18 |  | eqid |  |-  ( Base ` A ) = ( Base ` A ) | 
						
							| 19 |  | eqid |  |-  ( Scalar ` A ) = ( Scalar ` A ) | 
						
							| 20 |  | eqid |  |-  ( .s ` A ) = ( .s ` A ) | 
						
							| 21 |  | eqid |  |-  ( Base ` ( Scalar ` A ) ) = ( Base ` ( Scalar ` A ) ) | 
						
							| 22 | 18 19 20 21 | lmodvscl |  |-  ( ( A e. LMod /\ X e. ( Base ` ( Scalar ` A ) ) /\ (/) e. ( Base ` A ) ) -> ( X ( .s ` A ) (/) ) e. ( Base ` A ) ) | 
						
							| 23 | 5 10 17 22 | syl3anc |  |-  ( ( R e. Ring /\ X e. ( Base ` R ) ) -> ( X ( .s ` A ) (/) ) e. ( Base ` A ) ) | 
						
							| 24 | 15 | eleq2d |  |-  ( R e. Ring -> ( ( X ( .s ` A ) (/) ) e. ( Base ` A ) <-> ( X ( .s ` A ) (/) ) e. { (/) } ) ) | 
						
							| 25 |  | elsni |  |-  ( ( X ( .s ` A ) (/) ) e. { (/) } -> ( X ( .s ` A ) (/) ) = (/) ) | 
						
							| 26 | 24 25 | biimtrdi |  |-  ( R e. Ring -> ( ( X ( .s ` A ) (/) ) e. ( Base ` A ) -> ( X ( .s ` A ) (/) ) = (/) ) ) | 
						
							| 27 | 2 23 26 | sylc |  |-  ( ( R e. Ring /\ X e. ( Base ` R ) ) -> ( X ( .s ` A ) (/) ) = (/) ) |