| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mat0dim.a | ⊢ 𝐴  =  ( ∅  Mat  𝑅 ) | 
						
							| 2 |  | simpl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  ( Base ‘ 𝑅 ) )  →  𝑅  ∈  Ring ) | 
						
							| 3 |  | 0fi | ⊢ ∅  ∈  Fin | 
						
							| 4 | 1 | matlmod | ⊢ ( ( ∅  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  LMod ) | 
						
							| 5 | 3 2 4 | sylancr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  ( Base ‘ 𝑅 ) )  →  𝐴  ∈  LMod ) | 
						
							| 6 | 1 | matsca2 | ⊢ ( ( ∅  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑅  =  ( Scalar ‘ 𝐴 ) ) | 
						
							| 7 | 3 6 | mpan | ⊢ ( 𝑅  ∈  Ring  →  𝑅  =  ( Scalar ‘ 𝐴 ) ) | 
						
							| 8 | 7 | fveq2d | ⊢ ( 𝑅  ∈  Ring  →  ( Base ‘ 𝑅 )  =  ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) | 
						
							| 9 | 8 | eleq2d | ⊢ ( 𝑅  ∈  Ring  →  ( 𝑋  ∈  ( Base ‘ 𝑅 )  ↔  𝑋  ∈  ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) ) | 
						
							| 10 | 9 | biimpa | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  ( Base ‘ 𝑅 ) )  →  𝑋  ∈  ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) | 
						
							| 11 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 12 | 11 | snid | ⊢ ∅  ∈  { ∅ } | 
						
							| 13 | 1 | fveq2i | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ ( ∅  Mat  𝑅 ) ) | 
						
							| 14 |  | mat0dimbas0 | ⊢ ( 𝑅  ∈  Ring  →  ( Base ‘ ( ∅  Mat  𝑅 ) )  =  { ∅ } ) | 
						
							| 15 | 13 14 | eqtrid | ⊢ ( 𝑅  ∈  Ring  →  ( Base ‘ 𝐴 )  =  { ∅ } ) | 
						
							| 16 | 12 15 | eleqtrrid | ⊢ ( 𝑅  ∈  Ring  →  ∅  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  ( Base ‘ 𝑅 ) )  →  ∅  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 18 |  | eqid | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 ) | 
						
							| 19 |  | eqid | ⊢ ( Scalar ‘ 𝐴 )  =  ( Scalar ‘ 𝐴 ) | 
						
							| 20 |  | eqid | ⊢ (  ·𝑠  ‘ 𝐴 )  =  (  ·𝑠  ‘ 𝐴 ) | 
						
							| 21 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝐴 ) )  =  ( Base ‘ ( Scalar ‘ 𝐴 ) ) | 
						
							| 22 | 18 19 20 21 | lmodvscl | ⊢ ( ( 𝐴  ∈  LMod  ∧  𝑋  ∈  ( Base ‘ ( Scalar ‘ 𝐴 ) )  ∧  ∅  ∈  ( Base ‘ 𝐴 ) )  →  ( 𝑋 (  ·𝑠  ‘ 𝐴 ) ∅ )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 23 | 5 10 17 22 | syl3anc | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑋 (  ·𝑠  ‘ 𝐴 ) ∅ )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 24 | 15 | eleq2d | ⊢ ( 𝑅  ∈  Ring  →  ( ( 𝑋 (  ·𝑠  ‘ 𝐴 ) ∅ )  ∈  ( Base ‘ 𝐴 )  ↔  ( 𝑋 (  ·𝑠  ‘ 𝐴 ) ∅ )  ∈  { ∅ } ) ) | 
						
							| 25 |  | elsni | ⊢ ( ( 𝑋 (  ·𝑠  ‘ 𝐴 ) ∅ )  ∈  { ∅ }  →  ( 𝑋 (  ·𝑠  ‘ 𝐴 ) ∅ )  =  ∅ ) | 
						
							| 26 | 24 25 | biimtrdi | ⊢ ( 𝑅  ∈  Ring  →  ( ( 𝑋 (  ·𝑠  ‘ 𝐴 ) ∅ )  ∈  ( Base ‘ 𝐴 )  →  ( 𝑋 (  ·𝑠  ‘ 𝐴 ) ∅ )  =  ∅ ) ) | 
						
							| 27 | 2 23 26 | sylc | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑋 (  ·𝑠  ‘ 𝐴 ) ∅ )  =  ∅ ) |