Metamath Proof Explorer


Theorem mat0dimscm

Description: The scalar multiplication in the algebra of matrices with dimension 0. (Contributed by AV, 6-Aug-2019)

Ref Expression
Hypothesis mat0dim.a 𝐴 = ( ∅ Mat 𝑅 )
Assertion mat0dimscm ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑋 ( ·𝑠𝐴 ) ∅ ) = ∅ )

Proof

Step Hyp Ref Expression
1 mat0dim.a 𝐴 = ( ∅ Mat 𝑅 )
2 simpl ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) → 𝑅 ∈ Ring )
3 0fin ∅ ∈ Fin
4 1 matlmod ( ( ∅ ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ LMod )
5 3 2 4 sylancr ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) → 𝐴 ∈ LMod )
6 1 matsca2 ( ( ∅ ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑅 = ( Scalar ‘ 𝐴 ) )
7 3 6 mpan ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝐴 ) )
8 7 fveq2d ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝐴 ) ) )
9 8 eleq2d ( 𝑅 ∈ Ring → ( 𝑋 ∈ ( Base ‘ 𝑅 ) ↔ 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) )
10 9 biimpa ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) → 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) )
11 0ex ∅ ∈ V
12 11 snid ∅ ∈ { ∅ }
13 1 fveq2i ( Base ‘ 𝐴 ) = ( Base ‘ ( ∅ Mat 𝑅 ) )
14 mat0dimbas0 ( 𝑅 ∈ Ring → ( Base ‘ ( ∅ Mat 𝑅 ) ) = { ∅ } )
15 13 14 syl5eq ( 𝑅 ∈ Ring → ( Base ‘ 𝐴 ) = { ∅ } )
16 12 15 eleqtrrid ( 𝑅 ∈ Ring → ∅ ∈ ( Base ‘ 𝐴 ) )
17 16 adantr ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) → ∅ ∈ ( Base ‘ 𝐴 ) )
18 eqid ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 )
19 eqid ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝐴 )
20 eqid ( ·𝑠𝐴 ) = ( ·𝑠𝐴 )
21 eqid ( Base ‘ ( Scalar ‘ 𝐴 ) ) = ( Base ‘ ( Scalar ‘ 𝐴 ) )
22 18 19 20 21 lmodvscl ( ( 𝐴 ∈ LMod ∧ 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ ∅ ∈ ( Base ‘ 𝐴 ) ) → ( 𝑋 ( ·𝑠𝐴 ) ∅ ) ∈ ( Base ‘ 𝐴 ) )
23 5 10 17 22 syl3anc ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑋 ( ·𝑠𝐴 ) ∅ ) ∈ ( Base ‘ 𝐴 ) )
24 15 eleq2d ( 𝑅 ∈ Ring → ( ( 𝑋 ( ·𝑠𝐴 ) ∅ ) ∈ ( Base ‘ 𝐴 ) ↔ ( 𝑋 ( ·𝑠𝐴 ) ∅ ) ∈ { ∅ } ) )
25 elsni ( ( 𝑋 ( ·𝑠𝐴 ) ∅ ) ∈ { ∅ } → ( 𝑋 ( ·𝑠𝐴 ) ∅ ) = ∅ )
26 24 25 syl6bi ( 𝑅 ∈ Ring → ( ( 𝑋 ( ·𝑠𝐴 ) ∅ ) ∈ ( Base ‘ 𝐴 ) → ( 𝑋 ( ·𝑠𝐴 ) ∅ ) = ∅ ) )
27 2 23 26 sylc ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑋 ( ·𝑠𝐴 ) ∅ ) = ∅ )