| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mat0dim.a | ⊢ 𝐴  =  ( ∅  Mat  𝑅 ) | 
						
							| 2 |  | 0fi | ⊢ ∅  ∈  Fin | 
						
							| 3 | 1 | matring | ⊢ ( ( ∅  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 4 | 2 3 | mpan | ⊢ ( 𝑅  ∈  Ring  →  𝐴  ∈  Ring ) | 
						
							| 5 |  | mat0dimbas0 | ⊢ ( 𝑅  ∈  Ring  →  ( Base ‘ ( ∅  Mat  𝑅 ) )  =  { ∅ } ) | 
						
							| 6 | 1 | eqcomi | ⊢ ( ∅  Mat  𝑅 )  =  𝐴 | 
						
							| 7 | 6 | fveq2i | ⊢ ( Base ‘ ( ∅  Mat  𝑅 ) )  =  ( Base ‘ 𝐴 ) | 
						
							| 8 | 7 | eqeq1i | ⊢ ( ( Base ‘ ( ∅  Mat  𝑅 ) )  =  { ∅ }  ↔  ( Base ‘ 𝐴 )  =  { ∅ } ) | 
						
							| 9 |  | eqidd | ⊢ ( ( ( Base ‘ 𝐴 )  =  { ∅ }  ∧  𝑅  ∈  Ring )  →  ( ∅ ( .r ‘ 𝐴 ) ∅ )  =  ( ∅ ( .r ‘ 𝐴 ) ∅ ) ) | 
						
							| 10 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 11 |  | oveq1 | ⊢ ( 𝑥  =  ∅  →  ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( ∅ ( .r ‘ 𝐴 ) 𝑦 ) ) | 
						
							| 12 |  | oveq2 | ⊢ ( 𝑥  =  ∅  →  ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 )  =  ( 𝑦 ( .r ‘ 𝐴 ) ∅ ) ) | 
						
							| 13 | 11 12 | eqeq12d | ⊢ ( 𝑥  =  ∅  →  ( ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 )  ↔  ( ∅ ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐴 ) ∅ ) ) ) | 
						
							| 14 | 13 | ralbidv | ⊢ ( 𝑥  =  ∅  →  ( ∀ 𝑦  ∈  { ∅ } ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 )  ↔  ∀ 𝑦  ∈  { ∅ } ( ∅ ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐴 ) ∅ ) ) ) | 
						
							| 15 | 10 14 | ralsn | ⊢ ( ∀ 𝑥  ∈  { ∅ } ∀ 𝑦  ∈  { ∅ } ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 )  ↔  ∀ 𝑦  ∈  { ∅ } ( ∅ ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐴 ) ∅ ) ) | 
						
							| 16 |  | oveq2 | ⊢ ( 𝑦  =  ∅  →  ( ∅ ( .r ‘ 𝐴 ) 𝑦 )  =  ( ∅ ( .r ‘ 𝐴 ) ∅ ) ) | 
						
							| 17 |  | oveq1 | ⊢ ( 𝑦  =  ∅  →  ( 𝑦 ( .r ‘ 𝐴 ) ∅ )  =  ( ∅ ( .r ‘ 𝐴 ) ∅ ) ) | 
						
							| 18 | 16 17 | eqeq12d | ⊢ ( 𝑦  =  ∅  →  ( ( ∅ ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐴 ) ∅ )  ↔  ( ∅ ( .r ‘ 𝐴 ) ∅ )  =  ( ∅ ( .r ‘ 𝐴 ) ∅ ) ) ) | 
						
							| 19 | 10 18 | ralsn | ⊢ ( ∀ 𝑦  ∈  { ∅ } ( ∅ ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐴 ) ∅ )  ↔  ( ∅ ( .r ‘ 𝐴 ) ∅ )  =  ( ∅ ( .r ‘ 𝐴 ) ∅ ) ) | 
						
							| 20 | 15 19 | bitri | ⊢ ( ∀ 𝑥  ∈  { ∅ } ∀ 𝑦  ∈  { ∅ } ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 )  ↔  ( ∅ ( .r ‘ 𝐴 ) ∅ )  =  ( ∅ ( .r ‘ 𝐴 ) ∅ ) ) | 
						
							| 21 | 9 20 | sylibr | ⊢ ( ( ( Base ‘ 𝐴 )  =  { ∅ }  ∧  𝑅  ∈  Ring )  →  ∀ 𝑥  ∈  { ∅ } ∀ 𝑦  ∈  { ∅ } ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) | 
						
							| 22 |  | raleq | ⊢ ( ( Base ‘ 𝐴 )  =  { ∅ }  →  ( ∀ 𝑦  ∈  ( Base ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 )  ↔  ∀ 𝑦  ∈  { ∅ } ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) ) | 
						
							| 23 | 22 | raleqbi1dv | ⊢ ( ( Base ‘ 𝐴 )  =  { ∅ }  →  ( ∀ 𝑥  ∈  ( Base ‘ 𝐴 ) ∀ 𝑦  ∈  ( Base ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 )  ↔  ∀ 𝑥  ∈  { ∅ } ∀ 𝑦  ∈  { ∅ } ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( ( Base ‘ 𝐴 )  =  { ∅ }  ∧  𝑅  ∈  Ring )  →  ( ∀ 𝑥  ∈  ( Base ‘ 𝐴 ) ∀ 𝑦  ∈  ( Base ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 )  ↔  ∀ 𝑥  ∈  { ∅ } ∀ 𝑦  ∈  { ∅ } ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) ) | 
						
							| 25 | 21 24 | mpbird | ⊢ ( ( ( Base ‘ 𝐴 )  =  { ∅ }  ∧  𝑅  ∈  Ring )  →  ∀ 𝑥  ∈  ( Base ‘ 𝐴 ) ∀ 𝑦  ∈  ( Base ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) | 
						
							| 26 | 25 | ex | ⊢ ( ( Base ‘ 𝐴 )  =  { ∅ }  →  ( 𝑅  ∈  Ring  →  ∀ 𝑥  ∈  ( Base ‘ 𝐴 ) ∀ 𝑦  ∈  ( Base ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) ) | 
						
							| 27 | 8 26 | sylbi | ⊢ ( ( Base ‘ ( ∅  Mat  𝑅 ) )  =  { ∅ }  →  ( 𝑅  ∈  Ring  →  ∀ 𝑥  ∈  ( Base ‘ 𝐴 ) ∀ 𝑦  ∈  ( Base ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) ) | 
						
							| 28 | 5 27 | mpcom | ⊢ ( 𝑅  ∈  Ring  →  ∀ 𝑥  ∈  ( Base ‘ 𝐴 ) ∀ 𝑦  ∈  ( Base ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) | 
						
							| 29 |  | eqid | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 ) | 
						
							| 30 |  | eqid | ⊢ ( .r ‘ 𝐴 )  =  ( .r ‘ 𝐴 ) | 
						
							| 31 | 29 30 | iscrng2 | ⊢ ( 𝐴  ∈  CRing  ↔  ( 𝐴  ∈  Ring  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐴 ) ∀ 𝑦  ∈  ( Base ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) ) | 
						
							| 32 | 4 28 31 | sylanbrc | ⊢ ( 𝑅  ∈  Ring  →  𝐴  ∈  CRing ) |