| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scmatric.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | scmatric.c |  |-  C = ( N ScMat R ) | 
						
							| 3 |  | scmatric.s |  |-  S = ( A |`s C ) | 
						
							| 4 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 5 |  | eqid |  |-  ( 1r ` A ) = ( 1r ` A ) | 
						
							| 6 |  | eqid |  |-  ( .s ` A ) = ( .s ` A ) | 
						
							| 7 |  | eqid |  |-  ( x e. ( Base ` R ) |-> ( x ( .s ` A ) ( 1r ` A ) ) ) = ( x e. ( Base ` R ) |-> ( x ( .s ` A ) ( 1r ` A ) ) ) | 
						
							| 8 | 4 1 5 6 7 2 3 | scmatrngiso |  |-  ( ( N e. Fin /\ N =/= (/) /\ R e. Ring ) -> ( x e. ( Base ` R ) |-> ( x ( .s ` A ) ( 1r ` A ) ) ) e. ( R RingIso S ) ) | 
						
							| 9 | 8 | ne0d |  |-  ( ( N e. Fin /\ N =/= (/) /\ R e. Ring ) -> ( R RingIso S ) =/= (/) ) | 
						
							| 10 |  | brric |  |-  ( R ~=r S <-> ( R RingIso S ) =/= (/) ) | 
						
							| 11 | 9 10 | sylibr |  |-  ( ( N e. Fin /\ N =/= (/) /\ R e. Ring ) -> R ~=r S ) |