Step |
Hyp |
Ref |
Expression |
1 |
|
scmatric.a |
|- A = ( N Mat R ) |
2 |
|
scmatric.c |
|- C = ( N ScMat R ) |
3 |
|
scmatric.s |
|- S = ( A |`s C ) |
4 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
5 |
|
eqid |
|- ( 1r ` A ) = ( 1r ` A ) |
6 |
|
eqid |
|- ( .s ` A ) = ( .s ` A ) |
7 |
|
eqid |
|- ( x e. ( Base ` R ) |-> ( x ( .s ` A ) ( 1r ` A ) ) ) = ( x e. ( Base ` R ) |-> ( x ( .s ` A ) ( 1r ` A ) ) ) |
8 |
4 1 5 6 7 2 3
|
scmatrngiso |
|- ( ( N e. Fin /\ N =/= (/) /\ R e. Ring ) -> ( x e. ( Base ` R ) |-> ( x ( .s ` A ) ( 1r ` A ) ) ) e. ( R RingIso S ) ) |
9 |
8
|
ne0d |
|- ( ( N e. Fin /\ N =/= (/) /\ R e. Ring ) -> ( R RingIso S ) =/= (/) ) |
10 |
|
brric |
|- ( R ~=r S <-> ( R RingIso S ) =/= (/) ) |
11 |
9 10
|
sylibr |
|- ( ( N e. Fin /\ N =/= (/) /\ R e. Ring ) -> R ~=r S ) |