Metamath Proof Explorer


Theorem scmatric

Description: A ring is isomorphic to every ring of scalar matrices over this ring with positive dimension. (Contributed by AV, 29-Dec-2019)

Ref Expression
Hypotheses scmatric.a
|- A = ( N Mat R )
scmatric.c
|- C = ( N ScMat R )
scmatric.s
|- S = ( A |`s C )
Assertion scmatric
|- ( ( N e. Fin /\ N =/= (/) /\ R e. Ring ) -> R ~=r S )

Proof

Step Hyp Ref Expression
1 scmatric.a
 |-  A = ( N Mat R )
2 scmatric.c
 |-  C = ( N ScMat R )
3 scmatric.s
 |-  S = ( A |`s C )
4 eqid
 |-  ( Base ` R ) = ( Base ` R )
5 eqid
 |-  ( 1r ` A ) = ( 1r ` A )
6 eqid
 |-  ( .s ` A ) = ( .s ` A )
7 eqid
 |-  ( x e. ( Base ` R ) |-> ( x ( .s ` A ) ( 1r ` A ) ) ) = ( x e. ( Base ` R ) |-> ( x ( .s ` A ) ( 1r ` A ) ) )
8 4 1 5 6 7 2 3 scmatrngiso
 |-  ( ( N e. Fin /\ N =/= (/) /\ R e. Ring ) -> ( x e. ( Base ` R ) |-> ( x ( .s ` A ) ( 1r ` A ) ) ) e. ( R RingIso S ) )
9 8 ne0d
 |-  ( ( N e. Fin /\ N =/= (/) /\ R e. Ring ) -> ( R RingIso S ) =/= (/) )
10 brric
 |-  ( R ~=r S <-> ( R RingIso S ) =/= (/) )
11 9 10 sylibr
 |-  ( ( N e. Fin /\ N =/= (/) /\ R e. Ring ) -> R ~=r S )