| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scmatrhmval.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | scmatrhmval.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 3 |  | scmatrhmval.o | ⊢  1   =  ( 1r ‘ 𝐴 ) | 
						
							| 4 |  | scmatrhmval.t | ⊢  ∗   =  (  ·𝑠  ‘ 𝐴 ) | 
						
							| 5 |  | scmatrhmval.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝐾  ↦  ( 𝑥  ∗   1  ) ) | 
						
							| 6 |  | scmatrhmval.c | ⊢ 𝐶  =  ( 𝑁  ScMat  𝑅 ) | 
						
							| 7 |  | scmatghm.s | ⊢ 𝑆  =  ( 𝐴  ↾s  𝐶 ) | 
						
							| 8 |  | simpr | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑅  ∈  Ring ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 ) | 
						
							| 10 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 11 | 2 9 1 10 6 | scmatsrng | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐶  ∈  ( SubRing ‘ 𝐴 ) ) | 
						
							| 12 | 7 | subrgring | ⊢ ( 𝐶  ∈  ( SubRing ‘ 𝐴 )  →  𝑆  ∈  Ring ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑆  ∈  Ring ) | 
						
							| 14 | 1 2 3 4 5 6 7 | scmatghm | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐹  ∈  ( 𝑅  GrpHom  𝑆 ) ) | 
						
							| 15 |  | eqid | ⊢ ( mulGrp ‘ 𝑅 )  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 16 |  | eqid | ⊢ ( mulGrp ‘ 𝑆 )  =  ( mulGrp ‘ 𝑆 ) | 
						
							| 17 | 1 2 3 4 5 6 7 15 16 | scmatmhm | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐹  ∈  ( ( mulGrp ‘ 𝑅 )  MndHom  ( mulGrp ‘ 𝑆 ) ) ) | 
						
							| 18 | 14 17 | jca | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  𝐹  ∈  ( ( mulGrp ‘ 𝑅 )  MndHom  ( mulGrp ‘ 𝑆 ) ) ) ) | 
						
							| 19 | 15 16 | isrhm | ⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ↔  ( ( 𝑅  ∈  Ring  ∧  𝑆  ∈  Ring )  ∧  ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  𝐹  ∈  ( ( mulGrp ‘ 𝑅 )  MndHom  ( mulGrp ‘ 𝑆 ) ) ) ) ) | 
						
							| 20 | 8 13 18 19 | syl21anbrc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) ) |