| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scmatrhmval.k |  |-  K = ( Base ` R ) | 
						
							| 2 |  | scmatrhmval.a |  |-  A = ( N Mat R ) | 
						
							| 3 |  | scmatrhmval.o |  |-  .1. = ( 1r ` A ) | 
						
							| 4 |  | scmatrhmval.t |  |-  .* = ( .s ` A ) | 
						
							| 5 |  | scmatrhmval.f |  |-  F = ( x e. K |-> ( x .* .1. ) ) | 
						
							| 6 |  | scmatrhmval.c |  |-  C = ( N ScMat R ) | 
						
							| 7 | 1 2 3 4 5 6 | scmatf1 |  |-  ( ( N e. Fin /\ N =/= (/) /\ R e. Ring ) -> F : K -1-1-> C ) | 
						
							| 8 | 1 2 3 4 5 6 | scmatfo |  |-  ( ( N e. Fin /\ R e. Ring ) -> F : K -onto-> C ) | 
						
							| 9 | 8 | 3adant2 |  |-  ( ( N e. Fin /\ N =/= (/) /\ R e. Ring ) -> F : K -onto-> C ) | 
						
							| 10 |  | df-f1o |  |-  ( F : K -1-1-onto-> C <-> ( F : K -1-1-> C /\ F : K -onto-> C ) ) | 
						
							| 11 | 7 9 10 | sylanbrc |  |-  ( ( N e. Fin /\ N =/= (/) /\ R e. Ring ) -> F : K -1-1-onto-> C ) |