| Step |
Hyp |
Ref |
Expression |
| 1 |
|
scmatrhmval.k |
|- K = ( Base ` R ) |
| 2 |
|
scmatrhmval.a |
|- A = ( N Mat R ) |
| 3 |
|
scmatrhmval.o |
|- .1. = ( 1r ` A ) |
| 4 |
|
scmatrhmval.t |
|- .* = ( .s ` A ) |
| 5 |
|
scmatrhmval.f |
|- F = ( x e. K |-> ( x .* .1. ) ) |
| 6 |
|
scmatrhmval.c |
|- C = ( N ScMat R ) |
| 7 |
1 2 3 4 5 6
|
scmatf1 |
|- ( ( N e. Fin /\ N =/= (/) /\ R e. Ring ) -> F : K -1-1-> C ) |
| 8 |
1 2 3 4 5 6
|
scmatfo |
|- ( ( N e. Fin /\ R e. Ring ) -> F : K -onto-> C ) |
| 9 |
8
|
3adant2 |
|- ( ( N e. Fin /\ N =/= (/) /\ R e. Ring ) -> F : K -onto-> C ) |
| 10 |
|
df-f1o |
|- ( F : K -1-1-onto-> C <-> ( F : K -1-1-> C /\ F : K -onto-> C ) ) |
| 11 |
7 9 10
|
sylanbrc |
|- ( ( N e. Fin /\ N =/= (/) /\ R e. Ring ) -> F : K -1-1-onto-> C ) |